document.write( "Question 281599: Which of the following is equivalent to 6x 2 + x - 12 ?
\n" ); document.write( "A. (2x + 3)(3x - 4)
\n" ); document.write( "B. (2x - 3)(3x - 4)
\n" ); document.write( "C. (2x + 3)(3x + 4)
\n" ); document.write( "D. (6x + 3)(x - 12)
\n" ); document.write( "E. (x + 3)(2x - 12)\r
\n" ); document.write( "\n" ); document.write( "Please show me step by step how to solve this problem
\n" ); document.write( "Thanks
\n" ); document.write( "

Algebra.Com's Answer #204576 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"6x%5E2%2Bx-12\", we can see that the first coefficient is \"6\", the second coefficient is \"1\", and the last term is \"-12\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"6\" by the last term \"-12\" to get \"%286%29%28-12%29=-72\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-72\" (the previous product) and add to the second coefficient \"1\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-72\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-72\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,9,12,18,24,36,72\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-9,-12,-18,-24,-36,-72\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-72\".\r
\n" ); document.write( "\n" ); document.write( "1*(-72) = -72
\n" ); document.write( "2*(-36) = -72
\n" ); document.write( "3*(-24) = -72
\n" ); document.write( "4*(-18) = -72
\n" ); document.write( "6*(-12) = -72
\n" ); document.write( "8*(-9) = -72
\n" ); document.write( "(-1)*(72) = -72
\n" ); document.write( "(-2)*(36) = -72
\n" ); document.write( "(-3)*(24) = -72
\n" ); document.write( "(-4)*(18) = -72
\n" ); document.write( "(-6)*(12) = -72
\n" ); document.write( "(-8)*(9) = -72\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"1\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-721+(-72)=-71
2-362+(-36)=-34
3-243+(-24)=-21
4-184+(-18)=-14
6-126+(-12)=-6
8-98+(-9)=-1
-172-1+72=71
-236-2+36=34
-324-3+24=21
-418-4+18=14
-612-6+12=6
-89-8+9=1
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-8\" and \"9\" add to \"1\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-8\" and \"9\" both multiply to \"-72\" and add to \"1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"1x\" with \"-8x%2B9x\". Remember, \"-8\" and \"9\" add to \"1\". So this shows us that \"-8x%2B9x=1x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x%5E2%2Bhighlight%28-8x%2B9x%29-12\" Replace the second term \"1x\" with \"-8x%2B9x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%286x%5E2-8x%29%2B%289x-12%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-4%29%2B%289x-12%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%283x-4%29%2B3%283x-4%29\" Factor out \"3\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x%2B3%29%283x-4%29\" Combine like terms. Or factor out the common term \"3x-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6x%5E2%2Bx-12\" factors to \"%282x%2B3%29%283x-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"6x%5E2%2Bx-12=%282x%2B3%29%283x-4%29\". So the answer is A)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282x%2B3%29%283x-4%29\" to get \"6x%5E2%2Bx-12\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );