document.write( "Question 280586: The hypotenuse of a given right triangle is 6 cm longer than the
\n" );
document.write( "shorter leg. The length of the shorter leg is 2 cm less than that of the longer
\n" );
document.write( "leg.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #204441 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! The hypotenuse of a given right triangle is 6 cm longer than the \n" ); document.write( "shorter leg. The length of the shorter leg is 2 cm less than that of the longer \n" ); document.write( "leg. \n" ); document.write( "--- \n" ); document.write( "Let shorter leg be \"x\". \n" ); document.write( "Other leg is \"x+2\" \n" ); document.write( "Hypotenuse = \"x+6\" \n" ); document.write( "--------------------- \n" ); document.write( "Use Pythagoras to solve for \"x\" and the length of each side. \n" ); document.write( "(x+6)^2 = x^2 + (x+2)^2 \n" ); document.write( "x^2 + 12x + 36 = 2x^2 + 4x+4 \n" ); document.write( "x^2 - 8x - 32 = 0 \n" ); document.write( "--- \n" ); document.write( "Quadratic Formula: \n" ); document.write( "x = [8 +- sqrt(64-4*-32)]/2 \n" ); document.write( "--- \n" ); document.write( "x = [8 +- sqrt(192)]/2 \n" ); document.write( "--- \n" ); document.write( "Positive solution: \n" ); document.write( "x = (8 + sqrt(192))/2 \n" ); document.write( "x = 10.93 cm (shorter leg) \n" ); document.write( "x+2 = 12.93 cm (other leg) \n" ); document.write( "x+6 = 16.93 cm (hypotenuse) \n" ); document.write( "=============================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |