document.write( "Question 281414: A rectangle is inscribed in a circle of radius 6.5 cm. If the the length of the rectangle is 2 cm longer than twice the width, then the dimensions of the rectangle are:\r
\n" ); document.write( "\n" ); document.write( "(A) 4.5 cm x 11 cm (B) 5 cm x 12 cm (C) 5.5 cm x 13 cm
\n" ); document.write( "(D) 6.5 cm x 12 cm (E) none of these\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #204423 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
let the width of the rectangle be x\r
\n" ); document.write( "\n" ); document.write( "the length = 2x+2\r
\n" ); document.write( "\n" ); document.write( "the radius =6.5 which is half the diagonal. 6.5 *2 =13 will be diagonal\r
\n" ); document.write( "\n" ); document.write( "the diagonal is the hypotenuse of the triangle with sides x and 2x +2\r
\n" ); document.write( "\n" ); document.write( "x^2+(2x+2)^2=13^2\r
\n" ); document.write( "\n" ); document.write( "x^2+4x^2+8x+4=169\r
\n" ); document.write( "\n" ); document.write( "5x^2+8x-165=0\r
\n" ); document.write( "\n" ); document.write( "5x^2-25x+33x-165=0\r
\n" ); document.write( "\n" ); document.write( "5x(x-5)+33(x-5)=0\r
\n" ); document.write( "\n" ); document.write( "(x-5)(5x+33)=0\r
\n" ); document.write( "\n" ); document.write( "so x = 5 is the width\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "length is 2x+2 =12
\n" ); document.write( "
\n" );