document.write( "Question 281331: A farmer has 3000 feet of fencing available to enclose a rectangular field. What is the maximum area? \n" ); document.write( "
Algebra.Com's Answer #204345 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
A farmer has 3000 feet of fencing available to enclose a rectangular field. What is the maximum area?
\n" ); document.write( "----------------------
\n" ); document.write( "Perimeter = 2(L+W)
\n" ); document.write( "3000 = 2(L+W)
\n" ); document.write( "1500 = L+W
\n" ); document.write( "L = W-1500
\n" ); document.write( "---------------------
\n" ); document.write( "Area = W*L
\n" ); document.write( "A = W(W-1500)
\n" ); document.write( "A = W^2-1500W
\n" ); document.write( "---
\n" ); document.write( "Quadratic equation with a = 1, b = -1500
\n" ); document.write( "--------------------------------------------
\n" ); document.write( "Maximum occurs when W = -b/2a = 1500/2 = 750 ft.
\n" ); document.write( "---
\n" ); document.write( "Since L+W = 1500
\n" ); document.write( "L = 1500-750
\n" ); document.write( "L = 750ft
\n" ); document.write( "======
\n" ); document.write( "Final Answer: length and width need both be 750'
\n" ); document.write( "===================================================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" );