document.write( "Question 281331: A farmer has 3000 feet of fencing available to enclose a rectangular field. What is the maximum area? \n" ); document.write( "
Algebra.Com's Answer #204345 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! A farmer has 3000 feet of fencing available to enclose a rectangular field. What is the maximum area? \n" ); document.write( "---------------------- \n" ); document.write( "Perimeter = 2(L+W) \n" ); document.write( "3000 = 2(L+W) \n" ); document.write( "1500 = L+W \n" ); document.write( "L = W-1500 \n" ); document.write( "--------------------- \n" ); document.write( "Area = W*L \n" ); document.write( "A = W(W-1500) \n" ); document.write( "A = W^2-1500W \n" ); document.write( "--- \n" ); document.write( "Quadratic equation with a = 1, b = -1500 \n" ); document.write( "-------------------------------------------- \n" ); document.write( "Maximum occurs when W = -b/2a = 1500/2 = 750 ft. \n" ); document.write( "--- \n" ); document.write( "Since L+W = 1500 \n" ); document.write( "L = 1500-750 \n" ); document.write( "L = 750ft \n" ); document.write( "====== \n" ); document.write( "Final Answer: length and width need both be 750' \n" ); document.write( "=================================================== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |