document.write( "Question 278248: 4x-2y=4
\n" ); document.write( "-20x+10y=-20\r
\n" ); document.write( "\n" ); document.write( "is there no solution and does the graph only intersect at 1 point so the solution is unique?
\n" ); document.write( "

Algebra.Com's Answer #202489 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%284x-2y=4%2C-20x%2B10y=-20%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5%284x-2y%29=5%284%29\" Multiply the both sides of the first equation by 5.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20x-10y=20\" Distribute and multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we have the new system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%2820x-10y=20%2C-20x%2B10y=-20%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2820x-10y%29%2B%28-20x%2B10y%29=%2820%29%2B%28-20%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2820x%2B-20x%29%2B%28-10y%2B10y%29=20%2B-20\" Group like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0x%2B0y=0\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"0=0\"Simplify.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since \"0=0\" is always true, this means that there are an infinite number of solutions. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the system is consistent and dependent.
\n" ); document.write( "
\n" ); document.write( "
\n" );