document.write( "Question 276797: Factor.
\n" ); document.write( " 2y^2+17y+30
\n" ); document.write( "

Algebra.Com's Answer #201671 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"2y%5E2%2B17y%2B30\", we can see that the first coefficient is \"2\", the second coefficient is \"17\", and the last term is \"30\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"2\" by the last term \"30\" to get \"%282%29%2830%29=60\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"60\" (the previous product) and add to the second coefficient \"17\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"60\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"60\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,10,12,15,20,30,60\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"60\".\r
\n" ); document.write( "\n" ); document.write( "1*60 = 60
\n" ); document.write( "2*30 = 60
\n" ); document.write( "3*20 = 60
\n" ); document.write( "4*15 = 60
\n" ); document.write( "5*12 = 60
\n" ); document.write( "6*10 = 60
\n" ); document.write( "(-1)*(-60) = 60
\n" ); document.write( "(-2)*(-30) = 60
\n" ); document.write( "(-3)*(-20) = 60
\n" ); document.write( "(-4)*(-15) = 60
\n" ); document.write( "(-5)*(-12) = 60
\n" ); document.write( "(-6)*(-10) = 60\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"17\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1601+60=61
2302+30=32
3203+20=23
4154+15=19
5125+12=17
6106+10=16
-1-60-1+(-60)=-61
-2-30-2+(-30)=-32
-3-20-3+(-20)=-23
-4-15-4+(-15)=-19
-5-12-5+(-12)=-17
-6-10-6+(-10)=-16
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"5\" and \"12\" add to \"17\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"5\" and \"12\" both multiply to \"60\" and add to \"17\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"17y\" with \"5y%2B12y\". Remember, \"5\" and \"12\" add to \"17\". So this shows us that \"5y%2B12y=17y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y%5E2%2Bhighlight%285y%2B12y%29%2B30\" Replace the second term \"17y\" with \"5y%2B12y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282y%5E2%2B5y%29%2B%2812y%2B30%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%282y%2B5%29%2B%2812y%2B30%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%282y%2B5%29%2B6%282y%2B5%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y%2B6%29%282y%2B5%29\" Combine like terms. Or factor out the common term \"2y%2B5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"2y%5E2%2B17y%2B30\" factors to \"%28y%2B6%29%282y%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"2y%5E2%2B17y%2B30=%28y%2B6%29%282y%2B5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28y%2B6%29%282y%2B5%29\" to get \"2y%5E2%2B17y%2B30\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );