document.write( "Question 275629: Find the real part and imaginary part of (2+i)^5000 \n" ); document.write( "
Algebra.Com's Answer #201023 by CharlesG2(834)![]() ![]() ![]() You can put this solution on YOUR website! Find the real part and imaginary part of (2+i)^5000\r \n" ); document.write( "\n" ); document.write( "2 + i convert to polar form \n" ); document.write( "x + yj = r(cos θ + j sin θ) \n" ); document.write( "r = absolute value or modulus of the complex number \n" ); document.write( "θ = argument of complex number \n" ); document.write( "2 other ways of writing the polar form of a complex number: \n" ); document.write( "1. r cis θ [means r (cos θ + j sin θ)] \n" ); document.write( "2. r ∠ θ [means once again, r (cos θ + j sin θ)] \n" ); document.write( "r=sqrt(x^2 + y^2) \n" ); document.write( "r=sqrt(2^2 + 1^2) \n" ); document.write( "r=sqrt(4 + 1) \n" ); document.write( "r=sqrt(5) \n" ); document.write( "α = tan^(-1) (y/x) \n" ); document.write( "α = tan^(-1) (1/2) = 26.57 approx \n" ); document.write( "θ = 180° - α \n" ); document.write( "θ = 153.43 \n" ); document.write( "2+i = sqrt(5)(cos153.43 + isin153.43) \n" ); document.write( "2+i = re^(iθ) = sqrt(5)e^(153.43i) \n" ); document.write( "(re^(iθ))^n = r^n * e^(inθ) ( by De Moivre's Formula) \n" ); document.write( "r^n * e^(inθ) \n" ); document.write( "sqrt(5)^5000 * e^(i * 5000 * 153.43) \n" ); document.write( "2.66079147267277840928321052036*10^1747 * e^(767150i) \n" ); document.write( "2.66079147267277840928321052036*10^1747(cos767150 + isin767150) \n" ); document.write( "2.62036807143692290977402577219*10^1747 - (4.62041590381335873388318315839*10+1746)i is your answer \n" ); document.write( " \n" ); document.write( " |