document.write( "Question 33525: the sum of the first nine terms of an arithmetic progression is 75 and the twenty-fifth is also 75. find the common difference and the sum of the first hundred terms. \n" ); document.write( "
Algebra.Com's Answer #19912 by longjonsilver(2297)![]() ![]() You can put this solution on YOUR website! 25th term is a+24d, so a+24d = 75 --eqn1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Sum of 9 = \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Scale eqn1 by 3 to give 3a+72d = 225. So we have \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3a+72d = 225 \n" ); document.write( "18a+72d = 150\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Subtract, to give -15a = 75 \n" ); document.write( "--> a = -5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, from a+24d = 75 we get \n" ); document.write( "-5+24d = 75 \n" ); document.write( "24d = 80 \n" ); document.write( "d = 80/24 \n" ); document.write( "d = 10/3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This is: \n" ); document.write( "-5, -5/3, 5/3, 5, 25/3, 35/3, 15, 55/3, 65/3,... which does add up to 75.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, Sum of 100 terms is \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "50(-10 + 330) \n" ); document.write( "50(320) \n" ); document.write( "50(320) \n" ); document.write( "16000\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "jon. \n" ); document.write( " \n" ); document.write( " |