document.write( "Question 33414: The perimeter of a rectangle window is 32 ft. Find the dimension of the window that will enclose the largest area. \n" ); document.write( "
Algebra.Com's Answer #19773 by Paul(988)![]() ![]() ![]() You can put this solution on YOUR website! Perimeter is 2w+2L=32 \n" ); document.write( "sOLVE FOR L \n" ); document.write( "l=16-w (subsistuion) \n" ); document.write( "Max Area is A: \n" ); document.write( "(w)(l)=A \n" ); document.write( "Subsitute for l: \n" ); document.write( "(w)(16-w)=A \n" ); document.write( "-w^2+16w=A \n" ); document.write( "Differentate with respect to w: \n" ); document.write( " \n" ); document.write( "-2w=-16 \n" ); document.write( "w=8 \n" ); document.write( "l=16-8 \n" ); document.write( "l=8 \n" ); document.write( "8^2=64 \n" ); document.write( "Hence, the largest area you can have is 64ft^2 with length of 8ft and width of 8ft. \n" ); document.write( "Paul. \n" ); document.write( " |