document.write( "Question 269017: Can u please help me solve this equation by subsitution or the elimination method:
\n" );
document.write( "2x-3y=-21
\n" );
document.write( "5x+6y=4 \n" );
document.write( "
Algebra.Com's Answer #197186 by persian52(161)![]() ![]() You can put this solution on YOUR website! Here's in detail how to solve the equation by using substitution method, hope you get it now! \n" ); document.write( "-------------------------------------------------------------------------------- \n" ); document.write( "►► 2x-3y=-21_5x+6y=4 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( "\n" ); document.write( "►Since -3y does not contain the variable to solve for, move it to the right-hand side of the equation by adding 3y to both sides. \n" ); document.write( "2x=3y-21_5x+6y=4\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the equation by 2. \n" ); document.write( "(2x)/(2)=(3y)/(2)-(21)/(2)_5x+6y=4\r \n" ); document.write( "\n" ); document.write( "►Simplify the left-hand side of the equation by canceling the common terms. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5x+6y=4\r \n" ); document.write( "\n" ); document.write( "►Simplify the right-hand side of the equation by simplifying each term. \n" ); document.write( "x=(3(y-7))/(2)_5x+6y=4\r \n" ); document.write( "\n" ); document.write( "►Replace all occurrences of x with the solution found by solving the last equation for x. In this case, the value substituted is (3(y-7))/(2). \n" ); document.write( "x=(3(y-7))/(2)_5((3(y-7))/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Multiply 3 by each term inside the parentheses. \n" ); document.write( "x=((3y-21))/(2)_5((3(y-7))/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Remove the parentheses around the expression 3y-21. \n" ); document.write( "x=(3y-21)/(2)_5((3(y-7))/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the numerator by the denominator. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5((3(y-7))/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Multiply 3 by each term inside the parentheses. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5(((3y-21))/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Remove the parentheses around the expression 3y-21. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5((3y-21)/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the numerator by the denominator. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5((3y)/(2)-(21)/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Combine the numerators of all expressions that have common denominators. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_5((3y-21)/(2))+6y=4\r \n" ); document.write( "\n" ); document.write( "►Multiply 5 by each term inside the parentheses. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7))/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Multiply 15 by each term inside the parentheses. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_((15y-105))/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Remove the parentheses around the expression 15y-105. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15y-105)/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the numerator by the denominator. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15y)/(2)-(105)/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Combine the numerators of all expressions that have common denominators. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15y-105)/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Factor out the GCF of 15 from each term in the polynomial. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y)+15(-7))/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Factor out the GCF of 15 from 15y-105. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7))/(2)+6y=4\r \n" ); document.write( "\n" ); document.write( "►Multiply each term by a factor of 1 that will equate all the denominators. In this case, all terms need a denominator of 2. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7))/(2)+6y*(2)/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Multiply the expression by a factor of 1 to create the least common denominator (LCD) of 2. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7))/(2)+(6y*2)/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Multiply 6y by 2 to get 12y. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7))/(2)+(12y)/(2)=4\r \n" ); document.write( "\n" ); document.write( "►The numerators of expressions that have equal denominators can be combined. In this case, (15(y-7))/(2) and ((12y))/(2) have the same denominator of 2, so the numerators can be combined. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(15(y-7)+(12y))/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Simplify the numerator of the expression. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(27y-105)/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Factor out the GCF of 3 from each term in the polynomial. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(3(9y)+3(-35))/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Factor out the GCF of 3 from 27y-105. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(3(9y-35))/(2)=4\r \n" ); document.write( "\n" ); document.write( "►Multiply each term in the equation by 2. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(3(9y-35))/(2)*2=4*2\r \n" ); document.write( "\n" ); document.write( "►Simplify the left-hand side of the equation by canceling the common terms. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_3(9y-35)=4*2\r \n" ); document.write( "\n" ); document.write( "►Multiply 4 by 2 to get 8. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_3(9y-35)=8\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the equation by 3. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(3(9y-35))/(3)=(8)/(3)\r \n" ); document.write( "\n" ); document.write( "►Simplify the left-hand side of the equation by canceling the common terms. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_9y-35=(8)/(3)\r \n" ); document.write( "\n" ); document.write( "►Since -35 does not contain the variable to solve for, move it to the right-hand side of the equation by adding 35 to both sides. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_9y=35+(8)/(3)\r \n" ); document.write( "\n" ); document.write( "►Simplify the right-hand side of the equation. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_9y=(113)/(3)\r \n" ); document.write( "\n" ); document.write( "►Divide each term in the equation by 9. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_(9y)/(9)=(113)/(3)*(1)/(9)\r \n" ); document.write( "\n" ); document.write( "►Simplify the left-hand side of the equation by canceling the common terms. \n" ); document.write( "x=(3y)/(2)-(21)/(2)_y=(113)/(3)*(1)/(9)\r \n" ); document.write( "\n" ); document.write( "►Simplify the right-hand side of the equation by simplifying each term. \n" ); document.write( "=► x=(3y)/(2)-(21)/(2)_y=(113)/(27) \n" ); document.write( " |