document.write( "Question 265441: Three times the ten's digit of a certain two-digit number is two more than 4 times the unit's digit. The difference of the original number and the number obtained by reversing the digit is two less than twice the sum of the digits. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #195152 by vksarvepalli(154)\"\" \"About 
You can put this solution on YOUR website!
let the two digit number be xy (x- tens digit & y- units digit)\r
\n" ); document.write( "\n" ); document.write( "so number value=10x+y\r
\n" ); document.write( "\n" ); document.write( "reversed digit is yx and its value is 10y+x\r
\n" ); document.write( "\n" ); document.write( "given 3x = 2+4y --------------1 (so x>y and also xy>yx)\r
\n" ); document.write( "\n" ); document.write( "and also given that \r
\n" ); document.write( "\n" ); document.write( " (10x+y)-(10y+x) = 2(x+y)-2\r
\n" ); document.write( "\n" ); document.write( "=> 9x-9y = 2x+2y-2
\n" ); document.write( "=> 7x = 11y-2 ----------------2\r
\n" ); document.write( "\n" ); document.write( "multiply equation-1 by 7 and equation-2 by 3 and then subtract\r
\n" ); document.write( "\n" ); document.write( "we get 14+28y = 33y-6\r
\n" ); document.write( "\n" ); document.write( "=> 5y=20
\n" ); document.write( "=> y=4\r
\n" ); document.write( "\n" ); document.write( "and 3x=2+16=18\r
\n" ); document.write( "\n" ); document.write( "so x=6\r
\n" ); document.write( "\n" ); document.write( "so the two digit number is 64
\n" ); document.write( "
\n" );