document.write( "Question 265121: 3w^2+13w=10 \n" ); document.write( "
Algebra.Com's Answer #194984 by JBarnum(2146)\"\" \"About 
You can put this solution on YOUR website!
\"3w%5E2%2B13w=10\"
\n" ); document.write( "\"3w%5E2%2B13w-10=0\" Use quadratic formula \"Ax%5E2%2BBx%2BC=0\" A=3 B=13 C=-10
\n" ); document.write( "the answer is: 0.666666666666667, -5 Follow solver below
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"aw%5E2%2Bbw%2Bc=0\" (in our case \"3w%5E2%2B13w%2B-10+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"w%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%2813%29%5E2-4%2A3%2A-10=289\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=289 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-13%2B-sqrt%28+289+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"w%5B1%5D+=+%28-%2813%29%2Bsqrt%28+289+%29%29%2F2%5C3+=+0.666666666666667\"
\n" ); document.write( " \"w%5B2%5D+=+%28-%2813%29-sqrt%28+289+%29%29%2F2%5C3+=+-5\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"3w%5E2%2B13w%2B-10\" can be factored:
\n" ); document.write( " \"3w%5E2%2B13w%2B-10+=+3%28w-0.666666666666667%29%2A%28w--5%29\"
\n" ); document.write( " Again, the answer is: 0.666666666666667, -5.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+3%2Ax%5E2%2B13%2Ax%2B-10+%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );