document.write( "Question 32478: prove the following identity:\r
\n" ); document.write( "\n" ); document.write( "cos2A = 2cos^2A - 1
\n" ); document.write( "

Algebra.Com's Answer #19266 by sarah_adam(201)\"\" \"About 
You can put this solution on YOUR website!
Cos2A = Cos(A+A)\r
\n" ); document.write( "\n" ); document.write( "we know the formula for Cos(A+B)=CosACosB-SinASinB
\n" ); document.write( "therefore Cos(A+A)= CosACosA - SinASinA
\n" ); document.write( " = Cos^2A - Sin^2A
\n" ); document.write( "WE also know that Cos^2A + Sin^2A = 1
\n" ); document.write( " therfore Sin^2A = 1 - Cos^2A\r
\n" ); document.write( "\n" ); document.write( "Replacing the value of Sin^2A \r
\n" ); document.write( "\n" ); document.write( "Cos(A+A)= Cos^2A - (1 - Cos^2A)
\n" ); document.write( "Cos2A = Cos^2A - 1 +Cos^2A\r
\n" ); document.write( "\n" ); document.write( "Hence Cos2A = 2Cos^2A - 1\r
\n" ); document.write( "\n" ); document.write( "Thus Proved.
\n" ); document.write( "
\n" ); document.write( "
\n" );