document.write( "Question 258319: A parabola y = ax^2 + bx + c has vertex (4, 2). If (2, 0) is on the parabola, then find the value of abc \n" ); document.write( "
Algebra.Com's Answer #190200 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! The formula for the x position of the vertex is \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Now using the points, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "Now substitute for b. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "1. \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "2. \n" ); document.write( "Substitute into eq. 1 to solve for a. \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "Then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "and finally, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |