document.write( "Question 258319: A parabola y = ax^2 + bx + c has vertex (4, 2). If (2, 0) is on the parabola, then find the value of abc \n" ); document.write( "
Algebra.Com's Answer #190200 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
The formula for the x position of the vertex is
\n" ); document.write( "\"x=-b%2F2a\"
\n" ); document.write( "\"-b%2F2a=4\"
\n" ); document.write( "\"b=-8a\"
\n" ); document.write( "Now using the points,
\n" ); document.write( "\"y+=+ax%5E2+%2B+bx+%2B+c+\"
\n" ); document.write( "\"2+=+16a+%2B+4b+%2B+c+\"
\n" ); document.write( "\"16a%2B4b%2Bc=2\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"y+=+ax%5E2+%2B+bx+%2B+c+\"
\n" ); document.write( "\"0+=+4a+%2B+2b+%2B+c+\"
\n" ); document.write( "\"4a%2B2b%2Bc=0\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Now substitute for b.
\n" ); document.write( "\"b=-8a\"
\n" ); document.write( "\"16a%2B4b%2Bc=2\"
\n" ); document.write( "\"16a-32a%2Bc=2\"
\n" ); document.write( "1.\"-16a%2Bc=2\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"4a%2B2b%2Bc=0\"
\n" ); document.write( "\"4a-16a%2Bc=0\"
\n" ); document.write( "2.\"-12a%2Bc=0%7D%7D%0D%0A%7B%7B%7Bc=12a\"
\n" ); document.write( "Substitute into eq. 1 to solve for a.
\n" ); document.write( "\"-16a%2Bc=2\"
\n" ); document.write( "\"-16a%2B12a=2\"
\n" ); document.write( "\"-4a=2\"
\n" ); document.write( "\"a=-1%2F2\"
\n" ); document.write( "Then,
\n" ); document.write( "\"c=12a\"
\n" ); document.write( "\"c=-6\"
\n" ); document.write( "and finally,
\n" ); document.write( "\"b=-8a\"
\n" ); document.write( "\"b=4\"
\n" ); document.write( "So then,
\n" ); document.write( "\"y+=+%28-1%2F2%29x%5E2+%2B+4x+-6+\"
\n" ); document.write( "
\n" ); document.write( "\"abc=%28-1%2F2%29%284%29%28-6%29=12\"
\n" ); document.write( "
\n" );