document.write( "Question 257907: Without using a calculator or computer, determine which is larger, 2^3000 or 3^2000. \n" ); document.write( "
Algebra.Com's Answer #189778 by CharlesG2(834)![]() ![]() ![]() You can put this solution on YOUR website! Without using a calculator or computer, determine which is larger, 2^3000 or 3^2000\r \n" ); document.write( "\n" ); document.write( "2^1=2 \n" ); document.write( "2^2=4 \n" ); document.write( "2^3=8 \n" ); document.write( "2^4=16 \n" ); document.write( "2^5=32 \n" ); document.write( "2^10=32*32=32*30+32*2=960+64=1024 \n" ); document.write( "2^9=512\r \n" ); document.write( "\n" ); document.write( "3^1=3 \n" ); document.write( "3^2=9 \n" ); document.write( "3^3=27 \n" ); document.write( "3^4=27*3=20*3+7*3=60+21=81 \n" ); document.write( "3^5=243 \n" ); document.write( "3^6=729 \n" ); document.write( "3^10=243*243=243*240+243*3=243*24*10+240*3+3*3=(243*20+243*4)*10+720+9 \n" ); document.write( "3^10=(243*2*10+243*4)*10+720+9 \n" ); document.write( "3^10=(4860+972)*10+729 \n" ); document.write( "3^10=(4860+900+40+32)*10+729 \n" ); document.write( "3^10=(5760+40+32)*10+729 \n" ); document.write( "3^10=58320+729=59020+29=59049 (yes did this without a calculator , just a matter of breaking it down into simpler parts)\r \n" ); document.write( "\n" ); document.write( "do not think will go much further in powers, it begins to get really hard without a calculator\r \n" ); document.write( "\n" ); document.write( "but it seems obvious to me that 3 to a power is climbing a lot faster than 2 to a power\r \n" ); document.write( "\n" ); document.write( "so I am gonna say 3^2000 is bigger \n" ); document.write( " \n" ); document.write( " |