document.write( "Question 255615: A.construct a table of values for y=x^2-4x+3. use 0 B. Using your table from A, draw a table a graph of y=x^2-4x+3 in the space at the right.
\n" );
document.write( "c. based oon your graph and table, when x^2-4x+3=0 what is x?__________________
\n" );
document.write( "D. what is the formula of the line of reflection?_____________
\n" );
document.write( "E. what are the coordinates of the turning point?_____________\r
\n" );
document.write( "\n" );
document.write( "please please please answer my questions. \n" );
document.write( "
Algebra.Com's Answer #187830 by drk(1908)![]() ![]() ![]() You can put this solution on YOUR website! (A) First we construct a table of values as follows using y=x^2-4x+3 \n" ); document.write( "x: . . . . . -2 . . . . . -1 . . . . .0 . . . . .1 . . . . 2 . . . . . .3 \n" ); document.write( "y: . . . . .. 14 . . . . .8 . . . . . . 3 . . . . 0 . . . . -1 . . . . . .0 \n" ); document.write( "(B) you can graph this next part based on this table. \n" ); document.write( "(C) When Y = 0, then x = 3 or x = 1 \n" ); document.write( "(D) Line of reflection (axis of symmetry) is at X = 2 \n" ); document.write( "(E) If you mean max or min, then the vertex is a minimum at (2,-1) \n" ); document.write( " |