document.write( "Question 253634: Can you help me factor each of the following completely?
\n" ); document.write( "1. 4x^2-48x+135
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #185988 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'll do the first two to get you going.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"4x%5E2-48x%2B135\", we can see that the first coefficient is \"4\", the second coefficient is \"-48\", and the last term is \"135\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"4\" by the last term \"135\" to get \"%284%29%28135%29=540\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"540\" (the previous product) and add to the second coefficient \"-48\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"540\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"540\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-27,-30,-36,-45,-54,-60,-90,-108,-135,-180,-270,-540\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"540\".\r
\n" ); document.write( "\n" ); document.write( "1*540 = 540
\n" ); document.write( "2*270 = 540
\n" ); document.write( "3*180 = 540
\n" ); document.write( "4*135 = 540
\n" ); document.write( "5*108 = 540
\n" ); document.write( "6*90 = 540
\n" ); document.write( "9*60 = 540
\n" ); document.write( "10*54 = 540
\n" ); document.write( "12*45 = 540
\n" ); document.write( "15*36 = 540
\n" ); document.write( "18*30 = 540
\n" ); document.write( "20*27 = 540
\n" ); document.write( "(-1)*(-540) = 540
\n" ); document.write( "(-2)*(-270) = 540
\n" ); document.write( "(-3)*(-180) = 540
\n" ); document.write( "(-4)*(-135) = 540
\n" ); document.write( "(-5)*(-108) = 540
\n" ); document.write( "(-6)*(-90) = 540
\n" ); document.write( "(-9)*(-60) = 540
\n" ); document.write( "(-10)*(-54) = 540
\n" ); document.write( "(-12)*(-45) = 540
\n" ); document.write( "(-15)*(-36) = 540
\n" ); document.write( "(-18)*(-30) = 540
\n" ); document.write( "(-20)*(-27) = 540\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-48\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
15401+540=541
22702+270=272
31803+180=183
41354+135=139
51085+108=113
6906+90=96
9609+60=69
105410+54=64
124512+45=57
153615+36=51
183018+30=48
202720+27=47
-1-540-1+(-540)=-541
-2-270-2+(-270)=-272
-3-180-3+(-180)=-183
-4-135-4+(-135)=-139
-5-108-5+(-108)=-113
-6-90-6+(-90)=-96
-9-60-9+(-60)=-69
-10-54-10+(-54)=-64
-12-45-12+(-45)=-57
-15-36-15+(-36)=-51
-18-30-18+(-30)=-48
-20-27-20+(-27)=-47
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-18\" and \"-30\" add to \"-48\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-18\" and \"-30\" both multiply to \"540\" and add to \"-48\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-48x\" with \"-18x-30x\". Remember, \"-18\" and \"-30\" add to \"-48\". So this shows us that \"-18x-30x=-48x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"4x%5E2%2Bhighlight%28-18x-30x%29%2B135\" Replace the second term \"-48x\" with \"-18x-30x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%284x%5E2-18x%29%2B%28-30x%2B135%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%282x-9%29%2B%28-30x%2B135%29\" Factor out the GCF \"2x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2x%282x-9%29-15%282x-9%29\" Factor out \"15\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282x-15%29%282x-9%29\" Combine like terms. Or factor out the common term \"2x-9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"4x%5E2-48x%2B135\" factors to \"%282x-15%29%282x-9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"4x%5E2-48x%2B135=%282x-15%29%282x-9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%282x-15%29%282x-9%29\" to get \"4x%5E2-48x%2B135\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "\n" ); document.write( "========================================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "# 2\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"18x%5E2-3x-1\", we can see that the first coefficient is \"18\", the second coefficient is \"-3\", and the last term is \"-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"18\" by the last term \"-1\" to get \"%2818%29%28-1%29=-18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-18\" (the previous product) and add to the second coefficient \"-3\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-18\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-18\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-18\".\r
\n" ); document.write( "\n" ); document.write( "1*(-18) = -18
\n" ); document.write( "2*(-9) = -18
\n" ); document.write( "3*(-6) = -18
\n" ); document.write( "(-1)*(18) = -18
\n" ); document.write( "(-2)*(9) = -18
\n" ); document.write( "(-3)*(6) = -18\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-3\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-181+(-18)=-17
2-92+(-9)=-7
3-63+(-6)=-3
-118-1+18=17
-29-2+9=7
-36-3+6=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"3\" and \"-6\" add to \"-3\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"3\" and \"-6\" both multiply to \"-18\" and add to \"-3\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-3x\" with \"3x-6x\". Remember, \"3\" and \"-6\" add to \"-3\". So this shows us that \"3x-6x=-3x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"18x%5E2%2Bhighlight%283x-6x%29-1\" Replace the second term \"-3x\" with \"3x-6x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2818x%5E2%2B3x%29%2B%28-6x-1%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%286x%2B1%29%2B%28-6x-1%29\" Factor out the GCF \"3x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%286x%2B1%29-1%286x%2B1%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x-1%29%286x%2B1%29\" Combine like terms. Or factor out the common term \"6x%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"18x%5E2-3x-1\" factors to \"%283x-1%29%286x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"18x%5E2-3x-1=%283x-1%29%286x%2B1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%283x-1%29%286x%2B1%29\" to get \"18x%5E2-3x-1\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );