document.write( "Question 253415: 4. If the perimeter of a rectangle is 8√2 cm, what is the smallest possible value of the length of one of its diagonals in cm?\r
\n" );
document.write( "\n" );
document.write( "I've tried:
\n" );
document.write( "let length be l, width be w, and diagonal be d
\n" );
document.write( "let l be x, then w will be:
\n" );
document.write( "(8√2-2x)/2 = 4√2-x\r
\n" );
document.write( "\n" );
document.write( "d^2=l^2+w^2
\n" );
document.write( " =x^2+(4√2-x)^2
\n" );
document.write( " =x^2+(32-8√2x-x^2)
\n" );
document.write( " =32-8√2x... \n" );
document.write( "
Algebra.Com's Answer #185689 by scott8148(6628)![]() ![]() You can put this solution on YOUR website! let length be l, width be w, and diagonal be d \n" ); document.write( "let l be x, then w will be: \n" ); document.write( "(8√2-2x)/2 = 4√2-x \n" ); document.write( "d^2=l^2+w^2 \n" ); document.write( "=x^2+(4√2-x)^2 \n" ); document.write( "=x^2+(32-8√2x-x^2) ___ not quite ___ the x^2 in the expansion is positive (negative times negative is positive) \n" ); document.write( "=32-8√2x... ___ 2x^2 - 8√2x + 32\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is a quadratic (parabola) with a minimum on the axis of symmetry\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x = -b / 2a = 8√2 / 4 = 2√2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "substituting ___ d^2 = 2(2√2)^2 - 8√2(2√2) + 32 = 16 - 32 + 32 = 16\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "d = 4 \n" ); document.write( " |