document.write( "Question 253415: 4. If the perimeter of a rectangle is 8√2 cm, what is the smallest possible value of the length of one of its diagonals in cm?\r
\n" ); document.write( "\n" ); document.write( "I've tried:
\n" ); document.write( "let length be l, width be w, and diagonal be d
\n" ); document.write( "let l be x, then w will be:
\n" ); document.write( "(8√2-2x)/2 = 4√2-x\r
\n" ); document.write( "\n" ); document.write( "d^2=l^2+w^2
\n" ); document.write( " =x^2+(4√2-x)^2
\n" ); document.write( " =x^2+(32-8√2x-x^2)
\n" ); document.write( " =32-8√2x...
\n" ); document.write( "

Algebra.Com's Answer #185686 by edjones(8007)\"\" \"About 
You can put this solution on YOUR website!
A square has the smallest possible diagonals.
\n" ); document.write( "s=8sqrt(2)/4
\n" ); document.write( "=2sqrt(2) One side of the square
\n" ); document.write( "a^2+b^2=c^2
\n" ); document.write( "2sqrt(2)^2 + 2sqrt(2)^2 = c^2
\n" ); document.write( "8+8=16
\n" ); document.write( "c=4 cm
\n" ); document.write( ".
\n" ); document.write( "Ed
\n" ); document.write( "
\n" );