document.write( "Question 253415: 4. If the perimeter of a rectangle is 8√2 cm, what is the smallest possible value of the length of one of its diagonals in cm?\r
\n" );
document.write( "\n" );
document.write( "I've tried:
\n" );
document.write( "let length be l, width be w, and diagonal be d
\n" );
document.write( "let l be x, then w will be:
\n" );
document.write( "(8√2-2x)/2 = 4√2-x\r
\n" );
document.write( "\n" );
document.write( "d^2=l^2+w^2
\n" );
document.write( " =x^2+(4√2-x)^2
\n" );
document.write( " =x^2+(32-8√2x-x^2)
\n" );
document.write( " =32-8√2x... \n" );
document.write( "
Algebra.Com's Answer #185686 by edjones(8007)![]() ![]() You can put this solution on YOUR website! A square has the smallest possible diagonals. \n" ); document.write( "s=8sqrt(2)/4 \n" ); document.write( "=2sqrt(2) One side of the square \n" ); document.write( "a^2+b^2=c^2 \n" ); document.write( "2sqrt(2)^2 + 2sqrt(2)^2 = c^2 \n" ); document.write( "8+8=16 \n" ); document.write( "c=4 cm \n" ); document.write( ". \n" ); document.write( "Ed \n" ); document.write( " |