document.write( "Question 253415: 4. If the perimeter of a rectangle is 8√2 cm, what is the smallest possible value of the length of one of its diagonals in cm?\r
\n" );
document.write( "\n" );
document.write( "I've tried:
\n" );
document.write( "let length be l, width be w, and diagonal be d
\n" );
document.write( "let l be x, then w will be:
\n" );
document.write( "(8√2-2x)/2 = 4√2-x\r
\n" );
document.write( "\n" );
document.write( "d^2=l^2+w^2
\n" );
document.write( " =x^2+(4√2-x)^2
\n" );
document.write( " =x^2+(32-8√2x-x^2)
\n" );
document.write( " =32-8√2x... \n" );
document.write( "
Algebra.Com's Answer #185684 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! If the perimeter of a rectangle is 8√2 cm, what is the smallest possible value of the length of one of its diagonals in cm? \n" ); document.write( "----------------------------------------------------- \n" ); document.write( "Perimeter = 2(L + W) = 8sqrt(2) cm \n" ); document.write( "L+W = 4sqrt(2) cm \n" ); document.write( "Note: \n" ); document.write( "W = 4sqrt(2)-L \n" ); document.write( "------------------------ \n" ); document.write( "Diagonal = sqrt(L^2 + W^2) \n" ); document.write( "Substitute for W: \n" ); document.write( "D(L) = sqrt(L^2 + (4sqrt(2)-L)^2) \n" ); document.write( "D(L) = sqrt(L^2 + [L^2 - 8sqrt(2)L +32] \n" ); document.write( "D(L) = sqrt(2L^2 -8sqrt(2)L + 32) \n" ); document.write( "------ \n" ); document.write( "You have a quadratic with a = 2 ; b = -8sqrt(2) \n" ); document.write( "Minimum occurs when L = -b/2a = 8sqrt(2)/(4) = 2sqrt(2) \n" ); document.write( "W = 4sqrt(2)-2sqrt(2) = 2sqrt(2) \n" ); document.write( "------------------------ \n" ); document.write( "Minimum Diagonal: \n" ); document.write( "D^2 = L^2 + W^2 \n" ); document.write( "D^2 = (2sqrt(2))^2 + (2sqrt(2))^2 \n" ); document.write( "D^2 = 8 + 8 \n" ); document.write( "D = 4 cm \n" ); document.write( "================ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( " |