document.write( "Question 253255: Could you please help me prove that sin(x+y)sin(x-y)=cos^2y-cos^2x? \r
\n" );
document.write( "\n" );
document.write( "This is what I have done so far...\r
\n" );
document.write( "\n" );
document.write( "sin(x+y)sin(x-y)can be changed to(sinxcosy+sinycosx)(sinxcosy-sinycosx) \r
\n" );
document.write( "\n" );
document.write( "Also, cos^2y-cos^2x can be changed to 1-sin^y-1-sin^2x\r
\n" );
document.write( "\n" );
document.write( "I'm not sure if I am going about this the right way, so if not, could you please point me in the right direction? \n" );
document.write( "
Algebra.Com's Answer #185530 by drk(1908)![]() ![]() ![]() You can put this solution on YOUR website! We have to prove: \n" ); document.write( "(i) sin(x+y)*sin(x-y))=(cos^2y-cos^2x \n" ); document.write( "I will simplify the left into the right. \n" ); document.write( "identity: sin (x+y) = sinxcosy + sinycosx \n" ); document.write( "identity: sin(x-y) = sinxcosy - sinycosx \n" ); document.write( "from (i) we get \n" ); document.write( "(ii) \n" ); document.write( "multiply and we get \n" ); document.write( "(iii) sin^2x*cos^2y - sin^2y*cos^2x \n" ); document.write( "identity: sin^2x = 1 - cos^2x \n" ); document.write( "identity: sin^2y = 1 - cos^2y \n" ); document.write( "(iii) becomes \n" ); document.write( "(iv) (1-cos^2x)(cos^2y) - (1-cos^2y)(cos^2x) \n" ); document.write( "simplifying (iv) we get \n" ); document.write( "(v) cos^2y - cos^2x \n" ); document.write( "QED \n" ); document.write( " |