document.write( "Question 253128: Factoring help.\r
\n" ); document.write( "\n" ); document.write( "30v^2+186v-432
\n" ); document.write( "

Algebra.Com's Answer #185353 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "\"30v%5E2%2B186v-432\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6%285v%5E2%2B31v-72%29\" Factor out the GCF \"6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"5v%5E2%2B31v-72\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"5v%5E2%2B31v-72\", we can see that the first coefficient is \"5\", the second coefficient is \"31\", and the last term is \"-72\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"5\" by the last term \"-72\" to get \"%285%29%28-72%29=-360\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-360\" (the previous product) and add to the second coefficient \"31\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-360\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-360\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,8,9,10,12,15,18,20,24,30,36,40,45,60,72,90,120,180,360\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-8,-9,-10,-12,-15,-18,-20,-24,-30,-36,-40,-45,-60,-72,-90,-120,-180,-360\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-360\".\r
\n" ); document.write( "\n" ); document.write( "1*(-360) = -360
\n" ); document.write( "2*(-180) = -360
\n" ); document.write( "3*(-120) = -360
\n" ); document.write( "4*(-90) = -360
\n" ); document.write( "5*(-72) = -360
\n" ); document.write( "6*(-60) = -360
\n" ); document.write( "8*(-45) = -360
\n" ); document.write( "9*(-40) = -360
\n" ); document.write( "10*(-36) = -360
\n" ); document.write( "12*(-30) = -360
\n" ); document.write( "15*(-24) = -360
\n" ); document.write( "18*(-20) = -360
\n" ); document.write( "(-1)*(360) = -360
\n" ); document.write( "(-2)*(180) = -360
\n" ); document.write( "(-3)*(120) = -360
\n" ); document.write( "(-4)*(90) = -360
\n" ); document.write( "(-5)*(72) = -360
\n" ); document.write( "(-6)*(60) = -360
\n" ); document.write( "(-8)*(45) = -360
\n" ); document.write( "(-9)*(40) = -360
\n" ); document.write( "(-10)*(36) = -360
\n" ); document.write( "(-12)*(30) = -360
\n" ); document.write( "(-15)*(24) = -360
\n" ); document.write( "(-18)*(20) = -360\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"31\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-3601+(-360)=-359
2-1802+(-180)=-178
3-1203+(-120)=-117
4-904+(-90)=-86
5-725+(-72)=-67
6-606+(-60)=-54
8-458+(-45)=-37
9-409+(-40)=-31
10-3610+(-36)=-26
12-3012+(-30)=-18
15-2415+(-24)=-9
18-2018+(-20)=-2
-1360-1+360=359
-2180-2+180=178
-3120-3+120=117
-490-4+90=86
-572-5+72=67
-660-6+60=54
-845-8+45=37
-940-9+40=31
-1036-10+36=26
-1230-12+30=18
-1524-15+24=9
-1820-18+20=2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-9\" and \"40\" add to \"31\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-9\" and \"40\" both multiply to \"-360\" and add to \"31\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"31v\" with \"-9v%2B40v\". Remember, \"-9\" and \"40\" add to \"31\". So this shows us that \"-9v%2B40v=31v\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5v%5E2%2Bhighlight%28-9v%2B40v%29-72\" Replace the second term \"31v\" with \"-9v%2B40v\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%285v%5E2-9v%29%2B%2840v-72%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v%285v-9%29%2B%2840v-72%29\" Factor out the GCF \"v\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"v%285v-9%29%2B8%285v-9%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28v%2B8%29%285v-9%29\" Combine like terms. Or factor out the common term \"5v-9\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"6%285v%5E2%2B31v-72%29\" then factors further to \"6%28v%2B8%29%285v-9%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"30v%5E2%2B186v-432\" completely factors to \"6%28v%2B8%29%285v-9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"30v%5E2%2B186v-432=6%28v%2B8%29%285v-9%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"6%28v%2B8%29%285v-9%29\" to get \"30v%5E2%2B186v-432\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );