document.write( "Question 253088: find a three-digit positive integer such that the sum of all digits is 14, twice the hundreds digit plus the tens digit equals the ones digit, and, if the digits are reversed, the new number plus the original number equals 1090?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #185304 by richwmiller(17219)\"\" \"About 
You can put this solution on YOUR website!
a+b+c=14
\n" ); document.write( "2a+b=c
\n" ); document.write( "100a+10b+c+100c+10b+a=1090
\n" ); document.write( "248 is the original number
\n" ); document.write( "a=2
\n" ); document.write( "b=4
\n" ); document.write( "c=8
\n" ); document.write( "check
\n" ); document.write( "248+842=1090
\n" ); document.write( "2+4+8=14
\n" ); document.write( "2*2+4=8
\n" ); document.write( "4+4=8
\n" ); document.write( "ok
\n" ); document.write( "Apparently, there is another set of solutions which I missed.
\n" ); document.write( "941 and 149 do add up to 1090
\n" ); document.write( "and 1+4+9=14
\n" ); document.write( "2a+b=8
\n" ); document.write( "But 2*1+4=6 and not 8
\n" ); document.write( "So I didn't miss a solution after all.
\n" ); document.write( "
\n" ); document.write( "
\n" );