document.write( "Question 251006: Stumped\r
\n" );
document.write( "\n" );
document.write( "C <-> T
\n" );
document.write( "~C -> (~S v ~R)
\n" );
document.write( "~C -> D
\n" );
document.write( "(~D v S) & (~D v R)
\n" );
document.write( "We have to show T \n" );
document.write( "
Algebra.Com's Answer #184838 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "1. C <-> T\r\n" ); document.write( "2. ~C -> (~S v ~R)\r\n" ); document.write( "3. ~C -> D\r\n" ); document.write( "4. (~D v S) & (~D v R)\r\n" ); document.write( "We have to show T\r\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "5. ~D v (S&R) Distributive law on 4\r\n" ); document.write( " \r\n" ); document.write( "6. ~C -> ~(S&R) DeMorgan's law on the right side of 2 \r\n" ); document.write( "\r\n" ); document.write( "7. (S & R) -> C Contrapositive of 6 \r\n" ); document.write( "\r\n" ); document.write( "8. ~D -> C Contrapositive of 3\r\n" ); document.write( " \r\n" ); document.write( "9. [(S&R) -> C} & (~D -> C) Conjunction of 7 and 8\r\n" ); document.write( "\r\n" ); document.write( "10. [~(S&R) v C] & (~~D v C) Writing conditionals as disjunctions in 9\r\n" ); document.write( "\r\n" ); document.write( "11. [~(S&R) v C] & (D v C) Double negation on D in 10\r\n" ); document.write( "\r\n" ); document.write( "12. [~(S&R) & D] v C Distributive law on 11\r\n" ); document.write( "\r\n" ); document.write( "13 ~[(S&R v ~D] v C DeMorgan's law on the left part of 12\r\n" ); document.write( "\r\n" ); document.write( "14. (S&R) v ~D Commutative law on 5\r\n" ); document.write( "\r\n" ); document.write( "15. [(S&R) v ~D] & { ~[(S&R) v ~D] v C } Conjunction of 14 and 13 \r\n" ); document.write( "\r\n" ); document.write( "16.{[(S&R) v ~D] & ~[(S&R) v ~D]} v C Associative law on 15\r\n" ); document.write( "\r\n" ); document.write( "17. 0 v C The expression in braces in 16 is a contradiction \r\n" ); document.write( "\r\n" ); document.write( "18. C The identity law for disjunction in 17\r\n" ); document.write( "\r\n" ); document.write( "19. T By biconditional 1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |