document.write( "Question 251050: Heres 3 questions I was curious about\r
\n" ); document.write( "\n" ); document.write( "Given sin A = 1/3 A in Quad II, CosB = -3/5 B in Quad III,\r
\n" ); document.write( "\n" ); document.write( "find Sin(A+B) and tan2B\r
\n" ); document.write( "\n" ); document.write( "_________________________________________________________________\r
\n" ); document.write( "\n" ); document.write( "Solve for x : 0 < or = x < or = 360\r
\n" ); document.write( "\n" ); document.write( "3cos^2x = cosx AND 3cos^2x - 5sinx = 1\r
\n" ); document.write( "\n" ); document.write( "___________________________________________________________________
\n" ); document.write( "prove this identity:\r
\n" ); document.write( "\n" ); document.write( "sin2x/sinx - cos2x/cosx = secx
\n" ); document.write( "

Algebra.Com's Answer #184606 by drk(1908)\"\" \"About 
You can put this solution on YOUR website!
Lets take them one at a time:
\n" ); document.write( "Given sin A = 1/3 A in Quad II, CosB = -3/5 B in Quad III,
\n" ); document.write( "find Sin(A+B) and tan2B \r
\n" ); document.write( "\n" ); document.write( "Sin A = 1/3, Cos A = -2*sqrt(2)/3
\n" ); document.write( "Sin B = -4/5 Cos B = -3/5
\n" ); document.write( "Sin(A+B) = SinACosB + CosASinB = (1/3)(-3/5) + (2*sqrt(2)/3)(-4/5) = -3/15 - 8*sqrt(2)/15.
\n" ); document.write( "_________________________________________________________________
\n" ); document.write( "Solve for x : 0 < or = x < or = 360
\n" ); document.write( "3cos^2x = cosx AND 3cos^2x - 5sinx = 1 \r
\n" ); document.write( "\n" ); document.write( "3cos^2(x) - cos(x) = 0
\n" ); document.write( "cos(x) [3cos(x) - 1] = 0
\n" ); document.write( "cos(x) = 0 - -> X = pi/2 or 3pi/2
\n" ); document.write( "3cos(x) - 1 = 0
\n" ); document.write( "cos(x) = 1/3 - -> ~ 70.5 degrees\r
\n" ); document.write( "\n" ); document.write( "3cos^2(x) - 5Sin(x) = 1
\n" ); document.write( "we use an identity: sin^2x + cos^2x = 1.
\n" ); document.write( "3[1 - sin^2(x)] - 5sin(x) = 1
\n" ); document.write( "3Sin^2(x) + 5sin(x) -2 = 0
\n" ); document.write( "(3Sin(x) - 1)(Sin(x) + 2) = 0
\n" ); document.write( "3sin(x) - 1 = 0
\n" ); document.write( "sin(x) = 1/3 - -> ~19.5 degrees
\n" ); document.write( "sin(x) - 2 = 0 - - > no solution.\r
\n" ); document.write( "\n" ); document.write( "\"AND\" needs over lap, there is none here. However if you used substitution and set cos(x) = 5sin(x) + 1. The only values that work are 0 degrees and 360 degrees.\r
\n" ); document.write( "\n" ); document.write( "___________________________________________________________________
\n" ); document.write( "prove this identity:
\n" ); document.write( "\"sin2x%2Fsinx+-+cos2x%2Fcosx+=+secx\"\r
\n" ); document.write( "\n" ); document.write( "First we want to turn the more complicated side into the less complicated side. I will start with the left side.
\n" ); document.write( "An identity we need is: sin2x = 2sinxcosx
\n" ); document.write( "---
\n" ); document.write( "\"2sinxcosx%2Fsinx+-+cos2x%2Fcosx\"
\n" ); document.write( "---
\n" ); document.write( "\"2cosx+-+cos2x%2Fcosx\"
\n" ); document.write( "---
\n" ); document.write( "2cos^2x - cos2x / cosx
\n" ); document.write( "---
\n" ); document.write( "Another identity we need is: cos2x = cos^2x - sin^2x = 2cos^2x - 1
\n" ); document.write( "2cos^2x - (2cos^2x - 1 / cosx
\n" ); document.write( "---
\n" ); document.write( "\"1%2Fcosx\"
\n" ); document.write( "---
\n" ); document.write( "sec(x)
\n" ); document.write( "
\n" );