document.write( "Question 252454: Determine the value of the product \r
\n" );
document.write( "\n" );
document.write( "(1- 1/2^2)(1-1/3^2)(1-1/4^2)....(1-1/99^2)(1-1/100^2) \n" );
document.write( "
Algebra.Com's Answer #184421 by drk(1908)![]() ![]() ![]() You can put this solution on YOUR website! We want the product of \n" ); document.write( "(1-1/2^2)(1-1/3^2)(1-1/4^2)....(1-1/99^2)(1-1/100^2).\r \n" ); document.write( "\n" ); document.write( "We can re-express this a the product of simple fractions as \n" ); document.write( "(3/4)(8/9)(15/16)(24/25) . . . (9999/10000). \n" ); document.write( "(3/4)(8/9) = 2/3 = [6/9] \n" ); document.write( "(3/4)(8/9)(15/16) = 5/8 = [10/16] \n" ); document.write( "(3/4)(8/9)(15/16)(24/25) = 3/5 = [15/25] \n" ); document.write( "(3/4)(8/9)(15/16)(24/25)(35/36) = 7/12 = [21/36] \n" ); document.write( ". . . \n" ); document.write( "Notice the [parentheses] fractions. \n" ); document.write( "There is a pattern to the numerator: 6, 10, 15, 21, . . .are all triangular numbers with the formula \n" ); document.write( " \n" ); document.write( "The denominator is just (n+1)^2, where n>=2. \n" ); document.write( "Together, we get \n" ); document.write( " \n" ); document.write( "I use two because the first multiplication took 2 fractions. \n" ); document.write( "Now all of these together are 99 terms, so n = 99. \n" ); document.write( "Using n = 99, we get \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |