Algebra.Com's Answer #184342 by Edwin McCravy(20060)  You can put this solution on YOUR website! If P is the any point on the hyperbola whose axis are equal,prove that , where S and S' are the foci, and C is the center. \n" );
document.write( " \n" );
document.write( "\r\n" );
document.write( "Let the tranverse axis be along the x-axis and the conjugate axis be\r\n" );
document.write( "along the y-axis, with the center C at (0,0), the origin.\r\n" );
document.write( "\r\n" );
document.write( "Let both axes be 2, so that both the semi-tranverse axis, \"a\", and \r\n" );
document.write( "semi-conjugate axis, \"b\", are 1 each. Then the equation of the \r\n" );
document.write( "hyperbola, which is , becomes simply .\r\n" );
document.write( "In a hyperbola, , so , therefore\r\n" );
document.write( " , where \"c\" is the distance from the center to the focus.\r\n" );
document.write( "Therefore S and S' are the points ( ,0). \r\n" );
document.write( "\r\n" );
document.write( "[Do not confuse the center \"C(0,0)\" with the value of \"c\", the distance \r\n" );
document.write( "from the center to each focus.]\r\n" );
document.write( "\r\n" );
document.write( "Let P(x,y) be any arbitrary point on the hyperbola:\r\n" );
document.write( "The blue line is CP:\r\n" );
document.write( "\r\n" );
document.write( "The graph is:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Using the distance formula to find SP and SP' in terms of x:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Since the equation of the hyperbola is , then ,\r\n" );
document.write( "so substituting we get:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Similarly,\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "As before, since the equation of the hyperbola is ,\r\n" );
document.write( "then , so substituting we get:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "So \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " \r\n" );
document.write( "Multiplying under the radicals:\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Next we use the distance formuls to find CP where C is the origin (0,0).\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Since the equation of the hyperbola is , then ,\r\n" );
document.write( "so substituting we get\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "so \r\n" );
document.write( "\r\n" );
document.write( "Therefore , because both equal \r\n" );
document.write( "\r\n" );
document.write( "Edwin \n" );
document.write( " |