document.write( "Question 252364: What is the units digit of 3^2009?\r
\n" ); document.write( "\n" ); document.write( "(a) 1 (b) 3 (c) 5 (d) 7 (e) 9
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #184239 by scott8148(6628)\"\" \"About 
You can put this solution on YOUR website!
3^0 = 1
\n" ); document.write( "3^1 = 3
\n" ); document.write( "3^2 = 9
\n" ); document.write( "3^3 = 27
\n" ); document.write( "3^4 = 81
\n" ); document.write( "3^5 = 243
\n" ); document.write( "3^6 = 729
\n" ); document.write( "3^7 = 2187\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "the pattern for the units digit repeats 1-3-9-7 (or 3-9-7-1 if you start at 3^1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2009 / 4 = 502, with a remainder of 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "units digit of 3^2009 is the same as 3^1 ___ which is 3
\n" ); document.write( "
\n" );