document.write( "Question 252288: If the diagonal of a rectangle has length 7 feet and the rectangle’s area is 16 square feet, what is the perimeter of the rectangle in feet?\r
\n" );
document.write( "\n" );
document.write( "a 10 feet b 15 feet c 18 feet d 23 feet e 26 feet \n" );
document.write( "
Algebra.Com's Answer #184137 by checkley77(12844)![]() ![]() ![]() You can put this solution on YOUR website! FOR THE AREA OF THE RECTANGLE: \n" ); document.write( "XY=16 OR X=16/Y \n" ); document.write( "FOR THE TRIANGLE: \n" ); document.write( "X^2+Y^2=7^2 \n" ); document.write( "(16/Y)^2+Y^2=49 \n" ); document.write( "(256/Y^2)+Y^2=49 \n" ); document.write( "(256+Y^4)/Y^2=49 \n" ); document.write( "256+Y^4=49Y^2 \n" ); document.write( "Y^4-49Y^2+256=0 \n" ); document.write( " \n" ); document.write( "Y^2=(49+-SQRT[-49^2-4*1*256])/2*1 \n" ); document.write( "Y^2=(49+-SQRT[2,401-1.024])/2 \n" ); document.write( "Y^2=(49+-SQRT1,377)/2 \n" ); document.write( "Y^2=(49+-37.108)/2 \n" ); document.write( "Y^2=(49+37.108)/2 \n" ); document.write( "Y^2=86.108/2 \n" ); document.write( "Y^2=43.05 \n" ); document.write( "Y=SQRT43.05 \n" ); document.write( "Y=6.56 ANS. THEN X=2.44 \n" ); document.write( "Y^2=(49-37.108)/2 \n" ); document.write( "Y^2=11.892/2 \n" ); document.write( "Y^2=5.95 \n" ); document.write( "Y=SQRT5.95 \n" ); document.write( "Y=2.44 ANS. THEN X=6.56 \n" ); document.write( "PROOFS: \n" ); document.write( "6.56*2.44=16 \n" ); document.write( "16~16 \n" ); document.write( "6.56^2+2.44^2=49 \n" ); document.write( "43.03+5.954=49 \n" ); document.write( "49~49 \n" ); document.write( "tHUS THE PERIMETERIS: \n" ); document.write( "2*6.56+2*2.44=13.12+4.88=18 FT. IS THE PERIMETER. \n" ); document.write( "ANSWER C) \n" ); document.write( " |