document.write( "Question 252288: If the diagonal of a rectangle has length 7 feet and the rectangle’s area is 16 square feet, what is the perimeter of the rectangle in feet?\r
\n" ); document.write( "\n" ); document.write( "a 10 feet b 15 feet c 18 feet d 23 feet e 26 feet
\n" ); document.write( "

Algebra.Com's Answer #184137 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
FOR THE AREA OF THE RECTANGLE:
\n" ); document.write( "XY=16 OR X=16/Y
\n" ); document.write( "FOR THE TRIANGLE:
\n" ); document.write( "X^2+Y^2=7^2
\n" ); document.write( "(16/Y)^2+Y^2=49
\n" ); document.write( "(256/Y^2)+Y^2=49
\n" ); document.write( "(256+Y^4)/Y^2=49
\n" ); document.write( "256+Y^4=49Y^2
\n" ); document.write( "Y^4-49Y^2+256=0
\n" ); document.write( "\"Y%5E2+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+\"
\n" ); document.write( "Y^2=(49+-SQRT[-49^2-4*1*256])/2*1
\n" ); document.write( "Y^2=(49+-SQRT[2,401-1.024])/2
\n" ); document.write( "Y^2=(49+-SQRT1,377)/2
\n" ); document.write( "Y^2=(49+-37.108)/2
\n" ); document.write( "Y^2=(49+37.108)/2
\n" ); document.write( "Y^2=86.108/2
\n" ); document.write( "Y^2=43.05
\n" ); document.write( "Y=SQRT43.05
\n" ); document.write( "Y=6.56 ANS. THEN X=2.44
\n" ); document.write( "Y^2=(49-37.108)/2
\n" ); document.write( "Y^2=11.892/2
\n" ); document.write( "Y^2=5.95
\n" ); document.write( "Y=SQRT5.95
\n" ); document.write( "Y=2.44 ANS. THEN X=6.56
\n" ); document.write( "PROOFS:
\n" ); document.write( "6.56*2.44=16
\n" ); document.write( "16~16
\n" ); document.write( "6.56^2+2.44^2=49
\n" ); document.write( "43.03+5.954=49
\n" ); document.write( "49~49
\n" ); document.write( "tHUS THE PERIMETERIS:
\n" ); document.write( "2*6.56+2*2.44=13.12+4.88=18 FT. IS THE PERIMETER.
\n" ); document.write( "ANSWER C)
\n" ); document.write( "
\n" );