document.write( "Question 250391: \"220y%2B60y%5E2-225\"
\n" ); document.write( "Factor completely. show steps. if polynomial is prime, state this.\r
\n" ); document.write( "\n" ); document.write( "I tried to do this but i don't understand how its done. My first attempt I thought it was prime but my teacher said it was wrong and it could be factored. Could you please help?
\n" ); document.write( "

Algebra.Com's Answer #182307 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"220y%2B60y%5E2-225\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"60y%5E2%2B220y-225\" Rearrange the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"60y%5E2%2B220y-225\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5%2812y%5E2%2B44y-45%29\" Factor out the GCF \"5\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"12y%5E2%2B44y-45\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"12y%5E2%2B44y-45\", we can see that the first coefficient is \"12\", the second coefficient is \"44\", and the last term is \"-45\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"12\" by the last term \"-45\" to get \"%2812%29%28-45%29=-540\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-540\" (the previous product) and add to the second coefficient \"44\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-540\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-540\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,5,6,9,10,12,15,18,20,27,30,36,45,54,60,90,108,135,180,270,540\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-5,-6,-9,-10,-12,-15,-18,-20,-27,-30,-36,-45,-54,-60,-90,-108,-135,-180,-270,-540\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-540\".\r
\n" ); document.write( "\n" ); document.write( "1*(-540) = -540
\n" ); document.write( "2*(-270) = -540
\n" ); document.write( "3*(-180) = -540
\n" ); document.write( "4*(-135) = -540
\n" ); document.write( "5*(-108) = -540
\n" ); document.write( "6*(-90) = -540
\n" ); document.write( "9*(-60) = -540
\n" ); document.write( "10*(-54) = -540
\n" ); document.write( "12*(-45) = -540
\n" ); document.write( "15*(-36) = -540
\n" ); document.write( "18*(-30) = -540
\n" ); document.write( "20*(-27) = -540
\n" ); document.write( "(-1)*(540) = -540
\n" ); document.write( "(-2)*(270) = -540
\n" ); document.write( "(-3)*(180) = -540
\n" ); document.write( "(-4)*(135) = -540
\n" ); document.write( "(-5)*(108) = -540
\n" ); document.write( "(-6)*(90) = -540
\n" ); document.write( "(-9)*(60) = -540
\n" ); document.write( "(-10)*(54) = -540
\n" ); document.write( "(-12)*(45) = -540
\n" ); document.write( "(-15)*(36) = -540
\n" ); document.write( "(-18)*(30) = -540
\n" ); document.write( "(-20)*(27) = -540\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"44\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-5401+(-540)=-539
2-2702+(-270)=-268
3-1803+(-180)=-177
4-1354+(-135)=-131
5-1085+(-108)=-103
6-906+(-90)=-84
9-609+(-60)=-51
10-5410+(-54)=-44
12-4512+(-45)=-33
15-3615+(-36)=-21
18-3018+(-30)=-12
20-2720+(-27)=-7
-1540-1+540=539
-2270-2+270=268
-3180-3+180=177
-4135-4+135=131
-5108-5+108=103
-690-6+90=84
-960-9+60=51
-1054-10+54=44
-1245-12+45=33
-1536-15+36=21
-1830-18+30=12
-2027-20+27=7
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-10\" and \"54\" add to \"44\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-10\" and \"54\" both multiply to \"-540\" and add to \"44\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"44y\" with \"-10y%2B54y\". Remember, \"-10\" and \"54\" add to \"44\". So this shows us that \"-10y%2B54y=44y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"12y%5E2%2Bhighlight%28-10y%2B54y%29-45\" Replace the second term \"44y\" with \"-10y%2B54y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%2812y%5E2-10y%29%2B%2854y-45%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y%286y-5%29%2B%2854y-45%29\" Factor out the GCF \"2y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"2y%286y-5%29%2B9%286y-5%29\" Factor out \"9\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%282y%2B9%29%286y-5%29\" Combine like terms. Or factor out the common term \"6y-5\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"5%2812y%5E2%2B44y-45%29\" then factors further to \"5%282y%2B9%29%286y-5%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"220y%2B60y%5E2-225\" completely factors to \"5%282y%2B9%29%286y-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"220y%2B60y%5E2-225=5%282y%2B9%29%286y-5%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"5%282y%2B9%29%286y-5%29\" to get \"220y%2B60y%5E2-225\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );