document.write( "Question 249045: solve this matrix equation.\r
\n" );
document.write( "\n" );
document.write( "x+y=1
\n" );
document.write( "4x-3y=11
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #181441 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Step 1) Convert the system \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "into the augmented matrix\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Take note that the coefficients form the first 2x2 block and the right hand values form the last column. Visually, the correspondence is\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This conversion of notation allows us to ignore the variables (for now) since everything is based off of the numerical coefficients and right hand values.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Step 2) Row Reduction\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Our next step is to row reduce the matrix \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Looking at the last matrix |