document.write( "Question 248456: I just learned this today and not sure how to do this. Please help. I have a quiz tomorrow on it. It is factoring. Thank you!!\r
\n" ); document.write( "\n" ); document.write( "56-15z+z^2
\n" ); document.write( "

Algebra.Com's Answer #181064 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"56-15z%2Bz%5E2\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%5E2-15z%2B56\" Rearrange the terms in descending degree.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"z%5E2-15z%2B56\", we can see that the first coefficient is \"1\", the second coefficient is \"-15\", and the last term is \"56\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"56\" to get \"%281%29%2856%29=56\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"56\" (the previous product) and add to the second coefficient \"-15\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"56\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"56\":\r
\n" ); document.write( "\n" ); document.write( "1,2,4,7,8,14,28,56\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-4,-7,-8,-14,-28,-56\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"56\".\r
\n" ); document.write( "\n" ); document.write( "1*56 = 56
\n" ); document.write( "2*28 = 56
\n" ); document.write( "4*14 = 56
\n" ); document.write( "7*8 = 56
\n" ); document.write( "(-1)*(-56) = 56
\n" ); document.write( "(-2)*(-28) = 56
\n" ); document.write( "(-4)*(-14) = 56
\n" ); document.write( "(-7)*(-8) = 56\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-15\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1561+56=57
2282+28=30
4144+14=18
787+8=15
-1-56-1+(-56)=-57
-2-28-2+(-28)=-30
-4-14-4+(-14)=-18
-7-8-7+(-8)=-15
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-7\" and \"-8\" add to \"-15\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-7\" and \"-8\" both multiply to \"56\" and add to \"-15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-15z\" with \"-7z-8z\". Remember, \"-7\" and \"-8\" add to \"-15\". So this shows us that \"-7z-8z=-15z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%5E2%2Bhighlight%28-7z-8z%29%2B56\" Replace the second term \"-15z\" with \"-7z-8z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z%5E2-7z%29%2B%28-8z%2B56%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z-7%29%2B%28-8z%2B56%29\" Factor out the GCF \"z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z-7%29-8%28z-7%29\" Factor out \"8\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z-8%29%28z-7%29\" Combine like terms. Or factor out the common term \"z-7\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"56-15z%2Bz%5E2\" factors to \"%28z-8%29%28z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"56-15z%2Bz%5E2=%28z-8%29%28z-7%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"%28z-8%29%28z-7%29\" to get \"z%5E2-15z%2B56\" or by graphing the original expression and the answer (the two graphs should be identical).
\n" ); document.write( "
\n" ); document.write( "
\n" );