document.write( "Question 246255: Compute each of the following. Look for simplifications first.\r
\n" ); document.write( "\n" ); document.write( "a. 20P15 (the 20 and the 15 are small)It's looking for the permutation??\r
\n" ); document.write( "\n" ); document.write( "b. (n+1)!
\n" ); document.write( " ------
\n" ); document.write( " (n-1)!\r
\n" ); document.write( "\n" ); document.write( "Thank you so much in advance.
\n" ); document.write( "This is so difficult.
\n" ); document.write( "~Marney\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #179880 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
a)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"n%21%2F%28n-r%29%21\" Start with the given formula\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20%21%2F%2820-15%29%21\" Plug in \"n=20\" and \"r=15\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20%21%2F5%21\" Subtract \"20-15\" to get 5\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Expand 20!
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Expand 5!
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Cancel\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20%2A19%2A18%2A17%2A16%2A15%2A14%2A13%2A12%2A11%2A10%2A9%2A8%2A7%2A6\" Simplify\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"20274183401472000\" Now multiply 20*19*18*17*16*15*14*13*12*11*10*9*8*7*6 to get 20,274,183,401,472,000\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "================================================================\r
\n" ); document.write( "\n" ); document.write( "b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Expand the numerator. Remember that n! = n(n-1)(n-2)(n-3)...(3)(2)(1). So (n+1)! = (n+1)(n+1-1)(n+1-2)(n+1-3)(n+1-4)...(3)(2)(1)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Take note that (n-1)! = (n-1)(n-2)(n-3)...(3)(2)(1) which is what the numerator (minus the first two terms) looks like. So rewrite (n-1)(n-2)(n-3)...(3)(2)(1) as (n-1)!\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: if you're asking 'Why did we just do that?' The goal is to cancel out the factorials. Since the denominator has a (n-1)! term, we just need that term in the numerator for it to cancel out.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Cancel out the common terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Rearrange the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " ... Distribute\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So where 'n' is an integer and \"n%3E=1\"
\n" ); document.write( "
\n" );