document.write( "Question 246034: consider the functions f(x)=-x^2+3x+10 and g(x)=2x^2+2x+11/4. what is the exact distance between the vertices of the graphs of these two functions? cannot use graphing to answer.\r
\n" ); document.write( "\n" ); document.write( "hopefully this will be my last question of the year.
\n" ); document.write( "

Algebra.Com's Answer #179698 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Part 1) Find the vertices of \"f%28x%29=-x%5E2%2B3x%2B10\" and \"g%28x%29=2x%5E2%2B2x%2B11%2F4\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "part a) Let's find the vertex of \"f%28x%29=-x%5E2%2B3x%2B10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In order to find the vertex, we first need to find the x-coordinate of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find the x-coordinate of the vertex, use this formula: \"x=%28-b%29%2F%282a%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-b%29%2F%282a%29\" Start with the given formula.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From \"y=-x%5E2%2B3x%2B10\", we can see that \"a=-1\", \"b=3\", and \"c=10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-%283%29%29%2F%282%28-1%29%29\" Plug in \"a=-1\" and \"b=3\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-3%29%2F%28-2%29\" Multiply 2 and \"-1\" to get \"-2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=3%2F2\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the x-coordinate of the vertex is \"x=3%2F2\". Note: this means that the axis of symmetry is also \"x=3%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now that we know the x-coordinate of the vertex, we can use it to find the y-coordinate of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-x%5E2%2B3x%2B10\" Start with the given equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-%283%2F2%29%5E2%2B3%283%2F2%29%2B10\" Plug in \"x=3%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-1%289%2F4%29%2B3%283%2F2%29%2B10\" Square \"3%2F2\" to get \"9%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-9%2F4%2B3%283%2F2%29%2B10\" Multiply \"-1\" and \"9%2F4\" to get \"-9%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-9%2F4%2B9%2F2%2B10\" Multiply \"3\" and \"3%2F2\" to get \"9%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=49%2F4\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the y-coordinate of the vertex is \"y=49%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the vertex is .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "b) Now let's find the vertex of \"g%28x%29=2x%5E2%2B2x%2B11%2F4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In order to find the vertex, we first need to find the x-coordinate of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find the x-coordinate of the vertex, use this formula: \"x=%28-b%29%2F%282a%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-b%29%2F%282a%29\" Start with the given formula.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From \"y=2x%5E2%2B2x%2B11%2F4\", we can see that \"a=2\", \"b=2\", and \"c=11%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-%282%29%29%2F%282%282%29%29\" Plug in \"a=2\" and \"b=2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%28-2%29%2F%284%29\" Multiply 2 and \"2\" to get \"4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=-1%2F2\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the x-coordinate of the vertex is \"x=-1%2F2\". Note: this means that the axis of symmetry is also \"x=-1%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now that we know the x-coordinate of the vertex, we can use it to find the y-coordinate of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=2x%5E2%2B2x%2B11%2F4\" Start with the given equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=2%28-1%2F2%29%5E2%2B2%28-1%2F2%29%2B11%2F4\" Plug in \"x=-1%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=2%281%2F4%29%2B2%28-1%2F2%29%2B11%2F4\" Square \"-1%2F2\" to get \"1%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=1%2F2%2B2%28-1%2F2%29%2B11%2F4\" Multiply \"2\" and \"1%2F4\" to get \"1%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=1%2F2-1%2B11%2F4\" Multiply \"2\" and \"-1%2F2\" to get \"-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=9%2F4\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the y-coordinate of the vertex is \"y=9%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the vertex is .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So to recap, the vertices of \"f%28x%29=-x%5E2%2B3x%2B10\" and \"g%28x%29=2x%5E2%2B2x%2B11%2F4\" are and respectively.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Part 2) Now use the distance formula to find the distance between the two vertices (which are essentially points)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: is the first point . So this means that \"x%5B1%5D=3%2F2\" and \"y%5B1%5D=49%2F4\".\r
\n" ); document.write( "\n" ); document.write( "Also, is the second point . So this means that \"x%5B2%5D=-1%2F2\" and \"y%5B2%5D=9%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%28%28x%5B1%5D-x%5B2%5D%29%5E2%2B%28y%5B1%5D-y%5B2%5D%29%5E2%29\" Start with the distance formula.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%28%283%2F2--1%2F2%29%5E2%2B%2849%2F4-9%2F4%29%5E2%29\" Plug in \"x%5B1%5D=3%2F2\", \"x%5B2%5D=-1%2F2\", \"y%5B1%5D=49%2F4\", and \"y%5B2%5D=9%2F4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%28%282%29%5E2%2B%2849%2F4-9%2F4%29%5E2%29\" Subtract \"-1%2F2\" from \"3%2F2\" to get \"3%2F2--1%2F2=4%2F2=2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%28%282%29%5E2%2B%2810%29%5E2%29\" Subtract \"9%2F4\" from \"49%2F4\" to get \"49%2F4-9%2F4=40%2F4=10\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%284%2B%2810%29%5E2%29\" Square \"2\" to get \"4\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%284%2B100%29\" Square \"10\" to get \"100\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=sqrt%28104%29\" Add \"4\" to \"100\" to get \"104\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"d=2%2Asqrt%2826%29\" Simplify the square root.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So our answer is \"d=2%2Asqrt%2826%29\" \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the exact distance between the two vertices is \"2%2Asqrt%2826%29\" units.
\n" ); document.write( "
\n" );