document.write( "Question 243968: factor by grouping 3x^2+19x-2x-6 \n" ); document.write( "
Algebra.Com's Answer #178647 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
\"3x%5E2%2B19x-2x-6\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2B17x-6\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"3x%5E2%2B17x-6\", we can see that the first coefficient is \"3\", the second coefficient is \"17\", and the last term is \"-6\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"3\" by the last term \"-6\" to get \"%283%29%28-6%29=-18\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"-18\" (the previous product) and add to the second coefficient \"17\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"-18\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"-18\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,6,9,18\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-6,-9,-18\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"-18\".\r
\n" ); document.write( "\n" ); document.write( "1*(-18)
\n" ); document.write( "2*(-9)
\n" ); document.write( "3*(-6)
\n" ); document.write( "(-1)*(18)
\n" ); document.write( "(-2)*(9)
\n" ); document.write( "(-3)*(6)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"17\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1-181+(-18)=-17
2-92+(-9)=-7
3-63+(-6)=-3
-118-1+18=17
-29-2+9=7
-36-3+6=3
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"18\" add to \"17\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"18\" both multiply to \"-18\" and add to \"17\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"17x\" with \"-x%2B18x\". Remember, \"-1\" and \"18\" add to \"17\". So this shows us that \"-x%2B18x=17x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"3x%5E2%2Bhighlight%28-x%2B18x%29-6\" Replace the second term \"17x\" with \"-x%2B18x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%283x%5E2-x%29%2B%2818x-6%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%283x-1%29%2B%2818x-6%29\" Factor out the GCF \"x\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%283x-1%29%2B6%283x-1%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B6%29%283x-1%29\" Combine like terms. Or factor out the common term \"3x-1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"3x%5E2%2B19x-2x-6\" factors to \"%28x%2B6%29%283x-1%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"3x%5E2%2B19x-2x-6=%28x%2B6%29%283x-1%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by FOILing \"%28x%2B6%29%283x-1%29\" to get \"3x%5E2%2B17x-6\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );