document.write( "Question 4000: Find the value(s) of w so that the points (0,3) and (6,w) are 10 units apart. \n" ); document.write( "
Algebra.Com's Answer #1784 by Earlsdon(6294)\"\" \"About 
You can put this solution on YOUR website!
You can use the distance formula to solve this problem.\r
\n" ); document.write( "\n" ); document.write( "d = sqrt[(x2 - x1)^2 + (y2 - y1)^2], where: x1 = 0, x2 = 6, y1 = 3, y2 = w, and d = 10\r
\n" ); document.write( "\n" ); document.write( "10 = sqrt[(6-0)^2 + (w-3)^2]\r
\n" ); document.write( "\n" ); document.write( "10 = sqrt[36 + (w-3)^2] Square both sides.\r
\n" ); document.write( "\n" ); document.write( "100 = 36 + (w^2 - 6w + 9) Simplify.\r
\n" ); document.write( "\n" ); document.write( "w^2 - 6w + 45 = 100 Subtract 100 from both sides.\r
\n" ); document.write( "\n" ); document.write( "w^2 - 6w - 55 = 0 Solve the quadratic equation by factoring.\r
\n" ); document.write( "\n" ); document.write( "(w - 11)(w + 5) = 0 Apply the zero products principle.\r
\n" ); document.write( "\n" ); document.write( "w - 11 = 0, w = 11
\n" ); document.write( "w + 5 = 0, w = -5\r
\n" ); document.write( "\n" ); document.write( "The values of w are: 11 and -5
\n" ); document.write( "
\n" );