document.write( "Question 243323: I need help solving trinomials, sorry if I chose the wrong category
\n" ); document.write( "here is the problem: -y^2+10y-24.
\n" ); document.write( "

Algebra.Com's Answer #178254 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
I'm assuming that you want to factor.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-y%5E2%2B10y-24\" Start with the given expression.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-%28y%5E2-10y%2B24%29\" Factor out the GCF \"-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's try to factor the inner expression \"y%5E2-10y%2B24\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"y%5E2-10y%2B24\", we can see that the first coefficient is \"1\", the second coefficient is \"-10\", and the last term is \"24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"24\" to get \"%281%29%2824%29=24\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"24\" (the previous product) and add to the second coefficient \"-10\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"24\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"24\":\r
\n" ); document.write( "\n" ); document.write( "1,2,3,4,6,8,12,24\r
\n" ); document.write( "\n" ); document.write( "-1,-2,-3,-4,-6,-8,-12,-24\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"24\".\r
\n" ); document.write( "\n" ); document.write( "1*24 = 24
\n" ); document.write( "2*12 = 24
\n" ); document.write( "3*8 = 24
\n" ); document.write( "4*6 = 24
\n" ); document.write( "(-1)*(-24) = 24
\n" ); document.write( "(-2)*(-12) = 24
\n" ); document.write( "(-3)*(-8) = 24
\n" ); document.write( "(-4)*(-6) = 24\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-10\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
1241+24=25
2122+12=14
383+8=11
464+6=10
-1-24-1+(-24)=-25
-2-12-2+(-12)=-14
-3-8-3+(-8)=-11
-4-6-4+(-6)=-10
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-4\" and \"-6\" add to \"-10\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-4\" and \"-6\" both multiply to \"24\" and add to \"-10\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-10y\" with \"-4y-6y\". Remember, \"-4\" and \"-6\" add to \"-10\". So this shows us that \"-4y-6y=-10y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%5E2%2Bhighlight%28-4y-6y%29%2B24\" Replace the second term \"-10y\" with \"-4y-6y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y%5E2-4y%29%2B%28-6y%2B24%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-4%29%2B%28-6y%2B24%29\" Factor out the GCF \"y\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y%28y-4%29-6%28y-4%29\" Factor out \"6\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28y-6%29%28y-4%29\" Combine like terms. Or factor out the common term \"y-4\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-1%28y%5E2-10y%2B24%29\" then factors further to \"-%28y-6%29%28y-4%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"-y%5E2%2B10y-24\" completely factors to \"-%28y-6%29%28y-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"-y%5E2%2B10y-24=-%28y-6%29%28y-4%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: you can check the answer by expanding \"-%28y-6%29%28y-4%29\" to get \"-y%5E2%2B10y-24\" or by graphing the original expression and the answer (the two graphs should be identical).\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );