document.write( "Question 242975: Given that one of the roots of the quadratic equation 4x^2-(p-2)x-2p=5 is negative of the other root,find
\n" );
document.write( "(a)the value of p,
\n" );
document.write( "(b)the roots of the quadratic equation \n" );
document.write( "
Algebra.Com's Answer #177999 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Given that one of the roots of the quadratic equation 4x^2-(p-2)x-2p=5 is negative of the other root,find \n" ); document.write( "(a)the value of p, \n" ); document.write( "Let x and -x be the roots. \n" ); document.write( "Then, \n" ); document.write( "4x^2-(p-2)x-2p-5 = 0 \n" ); document.write( "And, replacing x with -x, \n" ); document.write( "4x^2 + (p-2)x -2p -5 = 0 \n" ); document.write( "----------------------------------- \n" ); document.write( "Subtracting the 1st from the 2nd you get: \n" ); document.write( "2(p-2)x = 0 \n" ); document.write( "--- \n" ); document.write( "So x = 0 or p = 2 \n" ); document.write( "=========================== \r \n" ); document.write( "\n" ); document.write( "(b)the roots of the quadratic equation \n" ); document.write( "4x^2-(p-2)x-2p=5 \n" ); document.write( "If p =2 \n" ); document.write( "4x^2 -2p = 5 \n" ); document.write( "4x^2= 2p+5 \n" ); document.write( "x^2 = (2p+5)/4 \n" ); document.write( "x = +-sqrt[(2p+5)/4] \n" ); document.write( "Since p = 2 \n" ); document.write( "x = +-sqrt[9/4] \n" ); document.write( "x = +-3/2 \n" ); document.write( "================================= \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "-------------------------- \n" ); document.write( " |