document.write( "Question 242905: How do I solve these proofs?\r
\n" );
document.write( "\n" );
document.write( "Number one
\n" );
document.write( "1.~B v[(C>D)&(E>D)]
\n" );
document.write( "2. B&(C v E) /therefore, D\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Number two
\n" );
document.write( "1. W&(A&M)
\n" );
document.write( "2. (A&W)>([(N v(R v H)]
\n" );
document.write( "3. ~N & (~P&~H) /therefore, R\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Number three
\n" );
document.write( "1. (O&T)>(S&M)
\n" );
document.write( "2. R>~M
\n" );
document.write( "3. T&R
\n" );
document.write( "4. O&S /therefore, V\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Number 4. last one
\n" );
document.write( "1. F>W /therefore, (F&S)>W
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #177901 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! # 1\r \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. ~B v [(C -> D) & (E -> D)]\r\n" ); document.write( "2. B & (C v E) /therefore D\r\n" ); document.write( "--------------------------------\r\n" ); document.write( "3. (C v E) & B 2 Commutation\r\n" ); document.write( "4. B 2 Simplification\r\n" ); document.write( "5. C v E 3 Simplification\r\n" ); document.write( "6. ~~B 4 Double Negation\r\n" ); document.write( "7. (C -> D) & (E -> D) 1,6 Disjunctive Syllogism\r\n" ); document.write( "8. D v D 7,5 Constructive Dilemma\r\n" ); document.write( "9. D 8 Tautology\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================\r \n" ); document.write( "\n" ); document.write( "# 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "1. W & (A & M)\r\n" ); document.write( "2. (A & W) -> [N v (R v H)]\r\n" ); document.write( "3. ~N & ( ~P & ~H ) /therefore, R\r\n" ); document.write( "---------------------------------- \r\n" ); document.write( "4. (W & A) & M 1 Association\r\n" ); document.write( "5. W & A 4 Simplification\r\n" ); document.write( "6. A & W 5 Commutation\r\n" ); document.write( "7. N v (R v H) 2,6 Modus Ponens\r\n" ); document.write( "8. ~N 3 Simplification\r\n" ); document.write( "9. ( ~P & ~H ) & ~N 3 Commutation\r\n" ); document.write( "10. ~P & ~H 9 Simplification\r\n" ); document.write( "11. ~H & ~P 10 Commutation\r\n" ); document.write( "12. ~H 11 Simplification\r\n" ); document.write( "13. R v H 7,8 Disjunctive Syllogism\r\n" ); document.write( "14. H v R 13 Commutation\r\n" ); document.write( "15. R 14,12 Disjunctive Syllogism\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================\r \n" ); document.write( "\n" ); document.write( "# 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. (O & T)>(S & M)\r\n" ); document.write( "2. R -> ~M\r\n" ); document.write( "3. T & R\r\n" ); document.write( "4. O & S /therefore, V \r\n" ); document.write( "----------------------------------\r\n" ); document.write( "5. R & T 3 Commutation\r\n" ); document.write( "6. R 5 Simplification\r\n" ); document.write( "7. O 4 Simplification\r\n" ); document.write( "8. T 3 Simplification\r\n" ); document.write( "9. O & T 7,8 Conjunction\r\n" ); document.write( "10. S & M 1,9 Modus Ponens\r\n" ); document.write( "11. M & S 10 Commutation\r\n" ); document.write( "12. M 11 Simplification\r\n" ); document.write( "13. ~~M 12 Double Negation\r\n" ); document.write( "14. ~R 2,13 Modus Tollens\r\n" ); document.write( "15. R & ~R 6,14 Conjunction\r\n" ); document.write( "16. F 15 Contradiction\r\n" ); document.write( "17. F v V 16 Addition\r\n" ); document.write( "18. V 17 Tautology\r\n" ); document.write( "\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "note: the truth value of R & ~R is ALWAYS false (since R can't be both true and false at the same time). I'm denoting 'false' as the letter 'F'. Also, the truth value of F v V is dependent on the truth value of V (since F is a constant). So F v V is equivalent to V\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "==============================================\r \n" ); document.write( "\n" ); document.write( "# 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "1. F -> W /therefore, (F & S) -> W\r\n" ); document.write( "---------------------------------------\r\n" ); document.write( "2. ~F v W 1 Material Implication\r\n" ); document.write( "3. (~F v W) v ~S 2 Addition\r\n" ); document.write( "4. ~F v (W v ~S) 3 Association\r\n" ); document.write( "5. ~F v (~S v W) 4 Commutation\r\n" ); document.write( "6. (~F v ~S) v W 5 Association\r\n" ); document.write( "7. ~(F & S) v W 6 De Morgan's Law\r\n" ); document.write( "8. (F & S) -> W 7 Material Implication\r\n" ); document.write( "\n" ); document.write( " |