document.write( "Question 241421: Solve the system of equations.\r
\n" ); document.write( "\n" ); document.write( "x + 5y = 2\r
\n" ); document.write( "\n" ); document.write( "-6x + 5y = -47
\n" ); document.write( "

Algebra.Com's Answer #176799 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Start with the given system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%28x%2B5y=2%2C-6x%2B5y=-47%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"-1%28-6x%2B5y%29=-1%28-47%29\" Multiply the both sides of the second equation by -1.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"6x-5y=47\" Distribute and multiply.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So we have the new system of equations:\r
\n" ); document.write( "\n" ); document.write( "\"system%28x%2B5y=2%2C6x-5y=47%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now add the equations together. You can do this by simply adding the two left sides and the two right sides separately like this:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B5y%29%2B%286x-5y%29=%282%29%2B%2847%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2B6x%29%2B%285y%2B-5y%29=2%2B47\" Group like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7x%2B0y=49\" Combine like terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7x=49\" Simplify.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=%2849%29%2F%287%29\" Divide both sides by \"7\" to isolate \"x\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x=7\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"x%2B5y=2\" Now go back to the first equation.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"7%2B5y=2\" Plug in \"x=7\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y=2-7\" Subtract \"7\" from both sides.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"5y=-5\" Combine like terms on the right side.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=%28-5%29%2F%285%29\" Divide both sides by \"5\" to isolate \"y\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"y=-1\" Reduce.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the solutions are \"x=7\" and \"y=-1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Which form the ordered pair .\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This means that the system is consistent and independent.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice when we graph the equations, we see that they intersect at . So this visually verifies our answer.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " Graph of \"x%2B5y=2\" (red) and \"-6x%2B5y=-47\" (green)
\n" ); document.write( "
\n" ); document.write( "
\n" );