document.write( "Question 238740: Factor
\n" ); document.write( "(a+4)^2 - 2(a+4) +1
\n" ); document.write( "

Algebra.Com's Answer #175464 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Let \"z=a%2B4\". So the expression \"%28a%2B4%29%5E2+-+2%28a%2B4%29+%2B1\" then becomes \"z%5E2-2z%2B1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Looking at the expression \"z%5E2-2z%2B1\", we can see that the first coefficient is \"1\", the second coefficient is \"-2\", and the last term is \"1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now multiply the first coefficient \"1\" by the last term \"1\" to get \"%281%29%281%29=1\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now the question is: what two whole numbers multiply to \"1\" (the previous product) and add to the second coefficient \"-2\"?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find these two numbers, we need to list all of the factors of \"1\" (the previous product).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factors of \"1\":\r
\n" ); document.write( "\n" ); document.write( "1\r
\n" ); document.write( "\n" ); document.write( "-1\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: list the negative of each factor. This will allow us to find all possible combinations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "These factors pair up and multiply to \"1\".\r
\n" ); document.write( "\n" ); document.write( "1*1 = 1
\n" ); document.write( "(-1)*(-1) = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now let's add up each pair of factors to see if one pair adds to the middle coefficient \"-2\":\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
First NumberSecond NumberSum
111+1=2
-1-1-1+(-1)=-2
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From the table, we can see that the two numbers \"-1\" and \"-1\" add to \"-2\" (the middle coefficient).\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So the two numbers \"-1\" and \"-1\" both multiply to \"1\" and add to \"-2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now replace the middle term \"-2z\" with \"-z-z\". Remember, \"-1\" and \"-1\" add to \"-2\". So this shows us that \"-z-z=-2z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%5E2%2Bhighlight%28-z-z%29%2B1\" Replace the second term \"-2z\" with \"-z-z\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z%5E2-z%29%2B%28-z%2B1%29\" Group the terms into two pairs.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z-1%29%2B%28-z%2B1%29\" Factor out the GCF \"z\" from the first group.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"z%28z-1%29-1%28z-1%29\" Factor out \"1\" from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z-1%29%28z-1%29\" Combine like terms. Or factor out the common term \"z-1\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28z-1%29%5E2\" Condense the terms.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"z%5E2-2z%2B1\" factors to \"%28z-1%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"z%5E2-2z%2B1=%28z-1%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now plug in \"z=a%2B4\" to go from \"%28z-1%29%5E2\" to \"%28a%2B4-1%29%5E2\". Now simplify to get \"%28a%2B3%29%5E2\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "===============================================================\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer:\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So \"%28a%2B4%29%5E2+-+2%28a%2B4%29+%2B1\" factors to \"%28a%2B3%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In other words, \"%28a%2B4%29%5E2+-+2%28a%2B4%29+%2B1=%28a%2B3%29%5E2\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );