document.write( "Question 233539: The equation y = 0.002x+ 0.50 can be used to determine the approximate profit, y in dollars, of producing x items. How many items must be produced so the profit will be at least $1795?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #172377 by rapaljer(4671)\"\" \"About 
You can put this solution on YOUR website!
y = 0.002x+ 0.50 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Solve for x where y = 1795
\n" ); document.write( "1795=0.002x+0.50\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Subtract 0.50 from each side:
\n" ); document.write( "1794.50=.002x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Divide both sides by .002\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%280.002x%29%2F%280.002%29=1794.5%2F0.002\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x=897,250 items\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Dr. Robert J. Rapalje, Retired
\n" ); document.write( "
\n" );