document.write( "Question 233474: The revenue for the sale of x items is determined by the formula R = 50 x – x2. The cost of producing x items is given by the formula C = 2x +40. For what value of x is the profit positive? (Profit = revenue minus cost)\r
\n" ); document.write( "\n" ); document.write( "Do I set it up like this ? 50x-x^2=2x+40
\n" ); document.write( "

Algebra.Com's Answer #172333 by checkley77(12844)\"\" \"About 
You can put this solution on YOUR website!
R = 50 x – x2.
\n" ); document.write( "C = 2x +40.
\n" ); document.write( "R-C>0 IS THE PROFIT EQUATION.
\n" ); document.write( "-------------------------------------
\n" ); document.write( "50X-X^2-(2X+40)>0
\n" ); document.write( "50X-X^2-2X-40>0
\n" ); document.write( "-X^2+48X-40>0
\n" ); document.write( "X^2-48X+40>0
\n" ); document.write( "\"x+=+%28-b+%2B-+sqrt%28+b%5E2-4%2Aa%2Ac+%29%29%2F%282%2Aa%29+\"
\n" ); document.write( "X=(48+-SQRT[-48^2-4*1*40])/2*1
\n" ); document.write( "X=(48+-SQRT[2,304-160)/2
\n" ); document.write( "X=(48+-SQRT2144)/2
\n" ); document.write( "X=(48+-46.3)/2
\n" ); document.write( "X=(48+46.3)/2
\n" ); document.write( "X=94.3/2
\n" ); document.write( "X=47.15 ANS.
\n" ); document.write( "THIS SAYS THAT AT LEAST 48 UNITS MUST BE SOLD TO HAVE A PROFIT.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );