document.write( "Question 231934: A quartic equation with integral coefficients has no cubic term and no constand term. If one root is 3-i the square root of 7, what are the other roots? \n" ); document.write( "
Algebra.Com's Answer #171580 by jsmallt9(3758)\"\" \"About 
You can put this solution on YOUR website!
The equation described would be of the form:
\n" ); document.write( "\"ax%5E4+%2B+cx%5E2+=+0\"
\n" ); document.write( "From this equation we can factor out x^2:
\n" ); document.write( "\"x%5E2%28ax%5E2+%2B+c%29+=+0\"
\n" ); document.write( "From this we can see that x=0 is a double root (aka root of multiplicity 2). And if \"3-i%2Asqrt%287%29\" is a root, then its conjugate. \"3%2Bi%2Asqrt%287%29\", will also be a root.

\n" ); document.write( "So the 4 roots are: 0 (twice), \"3%2Bi%2Asqrt%287%29\" and \"3-i%2Asqrt%287%29\"
\n" ); document.write( "
\n" );