document.write( "Question 231683: For mutually exclusive events X1, X2, and X3, let P(X1) = .22, P(X2) = .35 and P(X3) = .43. Also, P(Y | Y1) = .40 P(Y|X2) = .30 and P(Y|X3) = .60. Find P(X3|Y)\r
\n" );
document.write( "\n" );
document.write( "A) . 20 B) . 57 C) . 38 D) . 23 \r
\n" );
document.write( "\n" );
document.write( "This theorem is so complicated for me that I dont know where to begin. \n" );
document.write( "
Algebra.Com's Answer #171421 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! For mutually exclusive events X1, X2, and X3, \n" ); document.write( "let P(X1) = .22, P(X2) = .35 and P(X3) = .43. \n" ); document.write( "Also, P(Y | X1) = .40 P(Y|X2) = .30 and P(Y|X3) = .60. \n" ); document.write( "Find P(X3|Y) \n" ); document.write( "--- \n" ); document.write( "P(X3 | Y) = P(X3 and Y)/P(Y) \n" ); document.write( "---------------------------------- \n" ); document.write( "You are told P(Y | X3) = 0.6 \n" ); document.write( "So P(Y and X3)/P(X3) = 0.6 \n" ); document.write( "and P(Y and X3)/0.43 = 0.6 \n" ); document.write( "So, P(Y and X3) = 0.43*0.6 = 0.258 \n" ); document.write( "------------------------------------ \n" ); document.write( "Using that result you have: \n" ); document.write( "P(X3 | Y) = 0.258/P(Y) \n" ); document.write( "----------------------- \n" ); document.write( "But P(Y) = P(Y|X1) + P(Y|X2) + P(Y|X3) = 0.4 + 0.3 + 0.6 = 1.3 \n" ); document.write( "============================================================= \n" ); document.write( "Final Answer: P(X3 |Y) = 0.258/1.3 = 0.198 \n" ); document.write( "Round you be 0.20 \n" ); document.write( "which is answer \"A\" \n" ); document.write( "--- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "A) . 20 B) . 57 C) . 38 D) . 23 \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |