document.write( "Question 30361: Question:
\n" ); document.write( "Find the center and radius of x^2+y^2-6x-2y-6=0\r
\n" ); document.write( "\n" ); document.write( "Possible Answers:
\n" ); document.write( "(A) none of these
\n" ); document.write( "(B) center (3,1) radius 16
\n" ); document.write( "(C) center (3,1) radius 4
\n" ); document.write( "(D) center (-3,-1) radius 16\r
\n" ); document.write( "\n" ); document.write( "Thanks!
\n" ); document.write( "

Algebra.Com's Answer #17075 by Fermat(136)\"\" \"About 
You can put this solution on YOUR website!
x^2+y^2-6x-2y-6=0 \r
\n" ); document.write( "\n" ); document.write( "A circle, of radius r, and centred on the point (h,k) can be written as,
\n" ); document.write( "(x-h)² + (y-k)² = r²
\n" ); document.write( "expanding this expression,
\n" ); document.write( "x² - 2hx + h² + y² - 2ky + k² = r²
\n" ); document.write( "x² + y² - 2hx - 2ky + (h² + k² - r²) = 0
\n" ); document.write( "comparing this with the expression we were given,
\n" ); document.write( "x^2+y^2-6x-2y-6=0
\n" ); document.write( "and comparing coefficients,
\n" ); document.write( "-2h = -6
\n" ); document.write( "-2k = -2
\n" ); document.write( "h² + k² - r² = -6
\n" ); document.write( "From the 1st two eqns,
\n" ); document.write( "h = 3
\n" ); document.write( "=====
\n" ); document.write( "k = 1
\n" ); document.write( "=====
\n" ); document.write( "substituting for h=3 and k=1 into the 3rd eqn,
\n" ); document.write( "9 + 1 - r² = -6
\n" ); document.write( "-r² = -16
\n" ); document.write( "r² = 16
\n" ); document.write( "r = 4
\n" ); document.write( "=====
\n" ); document.write( "We therefore have: (h,k) = (3,1) and r = 4
\n" ); document.write( "============================================
\n" ); document.write( "Ans:C
\n" ); document.write( "=====
\n" ); document.write( "
\n" ); document.write( "
\n" );