document.write( "Question 30328: AX+BY=P
\n" );
document.write( "BX-AY=Q SOLVE FORX&Y
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #17003 by sdmmadam@yahoo.com(530)![]() ![]() ![]() You can put this solution on YOUR website! AX+BY=P ----(1)multiplied by A \n" ); document.write( "BX-AY=Q ----(2)multiplied by B\r \n" ); document.write( "\n" ); document.write( "(1) is multiplied by A and (2) is multiplied by B \n" ); document.write( "so that the coefficients of Y are made the same.\r \n" ); document.write( "\n" ); document.write( "A^2X +(AB)Y = AP ----(3) \n" ); document.write( "B^2X -(AB)Y = BQ ----(4) \n" ); document.write( "(3) + (4) gives \n" ); document.write( "(A^2+B^2)X = AP+BQ \n" ); document.write( "Dividing by (A^2+B^2) \n" ); document.write( "X = (AP+BQ)/(A^2+B^2) ----(*) \n" ); document.write( "Putting (*) in (1) \n" ); document.write( "AX+BY =P \n" ); document.write( "A times[(AP+BQ)/(A^2+B^2)]+BY = P \n" ); document.write( "Multiplying by (A^2+B^2) \n" ); document.write( "A(AP+BQ) +B(A^2+B^2)Y = P(A^2+B^2) \n" ); document.write( "B(A^2+B^2)Y = P(A^2+B^2)-A(AP+BQ) \n" ); document.write( "B(A^2+B^2)Y = PA^2+PB^2-PA^2-ABQ \n" ); document.write( "B(A^2+B^2)Y = (PA^2-PA^2)+PB^2-ABQ \n" ); document.write( "B(A^2+B^2)Y = (PA^2-PA^2)+PB^2-ABQ \n" ); document.write( "B(A^2+B^2)Y = 0+B(BP-AQ) \n" ); document.write( "B(A^2+B^2)Y = B(BP-AQ) \n" ); document.write( "Dividing by B(A^2+B^2) \n" ); document.write( "Y = (BP-AQ)/(A^2+B^2) \n" ); document.write( "Answer: X = (AP+BQ)/(A^2+B^2) and Y = (BP-AQ)/(A^2+B^2) \n" ); document.write( "Note:Instead of substituting for X and getting Y,we may give a similar treatment of equalising coefficients and using subtractilon to get rid of X to get Y. \n" ); document.write( "Verification:Since (1) was used to find Y substituting for X we shall \n" ); document.write( "use (2) for verification. \n" ); document.write( "BX-AY=Q ----(2) \n" ); document.write( "Putting X = (AP+BQ)/(A^2+B^2) and Y = (BP-AQ)/(A^2+B^2)in this \n" ); document.write( "LHS = B(AP+BQ)/(A^2+B^2) - A(BP-AQ)/(A^2+B^2) \n" ); document.write( "=[1/(A^2+B^2)]multiplied by[B(AP+BQ)- A(BP-AQ)] \n" ); document.write( "=[1/(A^2+B^2)]multiplied by(ABP+B^2Q-ABP+A^2Q] \n" ); document.write( "=(ABP-ABP+A^2Q+B^2Q]/(A^2+B^2) \n" ); document.write( "=[0+(A^2+B^2)Q]/(A^2+B^2) \n" ); document.write( "=(A^2+B^2)Q]/(A^2+B^2) \n" ); document.write( "=Q (cancelling (A^2+B^2) \n" ); document.write( "=RHS\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |