document.write( "Question 30291: The sum of the digits of a two-digit number is 15. If the digits are reversed, the new number is 27 less than the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #16954 by Paul(988)![]() ![]() ![]() You can put this solution on YOUR website! THe original number is 10x+y \n" ); document.write( "x is the ten digit and y is the one digit \n" ); document.write( "Sum: \n" ); document.write( "x+y=15 \n" ); document.write( "y=15-x (subsitution)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Digits reversed: \n" ); document.write( "10y+x --. Now the ones is tens and the tens is ones: \n" ); document.write( "10y+x=(10x+y)-27 \n" ); document.write( "10(15-x)+x=10x+15-x-27 \n" ); document.write( "150-9x=9x-12 \n" ); document.write( "-18x=-162 \n" ); document.write( "x=9\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y=15-9 \n" ); document.write( "y=6\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, the 2 digit number is 96. 9-->10 digit and 6-->one digit. \n" ); document.write( "Paul. \n" ); document.write( " \n" ); document.write( " |