document.write( "Question 30291: The sum of the digits of a two-digit number is 15. If the digits are reversed, the new number is 27 less than the original number. Find the original number. \n" ); document.write( "
Algebra.Com's Answer #16954 by Paul(988)\"\" \"About 
You can put this solution on YOUR website!
THe original number is 10x+y
\n" ); document.write( "x is the ten digit and y is the one digit
\n" ); document.write( "Sum:
\n" ); document.write( "x+y=15
\n" ); document.write( "y=15-x (subsitution)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Digits reversed:
\n" ); document.write( "10y+x --. Now the ones is tens and the tens is ones:
\n" ); document.write( "10y+x=(10x+y)-27
\n" ); document.write( "10(15-x)+x=10x+15-x-27
\n" ); document.write( "150-9x=9x-12
\n" ); document.write( "-18x=-162
\n" ); document.write( "x=9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "y=15-9
\n" ); document.write( "y=6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence, the 2 digit number is 96. 9-->10 digit and 6-->one digit.
\n" ); document.write( "Paul.
\n" ); document.write( "
\n" ); document.write( "
\n" );