document.write( "Question 225501: Find the inverse of the matrix:
\n" ); document.write( "1 1 1
\n" ); document.write( "3 5 4
\n" ); document.write( "3 6 5
\n" ); document.write( "

Algebra.Com's Answer #168244 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Augment your matrix with the 3X3 identity matrix:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Next use Gauss-Jordan elimination to transform the left-hand 3X3 side of your augmented matrix into the identity matrix, thus:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The resulting 3X3 on the right, consisting of through will be your identity matrix.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Fortunately, there is a much easier way. Go to http://www.bluebit.gr/matrix-calculator/, enter your matrix just like you did here separating the elements with spaces and the rows with carriage returns, check off Matrix Inverse, and then click Calculate.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );