x+1=9x^3 + 9x^2 solve the polynomial equation.
\n" );
document.write( "Been working on this one for awhile and i cant seem to get this one. 4 answers it needs.
\n" );
document.write( "\r\n" );
document.write( "No, it only needs 3 \"answers\", \"solutions\" or \"roots\", whichever\r\n" );
document.write( "label you wish to give them. That's because the degree (largest\r\n" );
document.write( "exponent of x) is 3.\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Get zero on the right:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Multiply through by -1 so leading coefficient will be\r\n" );
document.write( "positive:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Possible rational zeros are\r\n" );
document.write( "\r\n" );
document.write( "±1, ±
, and ±
\r\n" );
document.write( "\r\n" );
document.write( "By DesCartes' rule of signs, there is one positive\r\n" );
document.write( "answer (solution or root), and 2 or 0 negative ones.\r\n" );
document.write( "\r\n" );
document.write( "Let's try x=1, that is, divide by x-1 to see if\r\n" );
document.write( "1 is a solution:\r\n" );
document.write( "\r\n" );
document.write( "1 | 9 9 -1 -1\r\n" );
document.write( " | 9 -18 -19\r\n" );
document.write( " ----------------\r\n" );
document.write( " 9 -18 -19 -20\r\n" );
document.write( "\r\n" );
document.write( "Nope, the remainder is -20, not zero, so x-1 is not a\r\n" );
document.write( "divisor of
, and so x=1 is not\r\n" );
document.write( "a solution.\r\n" );
document.write( "\r\n" );
document.write( "Let's try x=-1, that is, divide by x+1 to see if\r\n" );
document.write( "-1 is a solution:\r\n" );
document.write( "\r\n" );
document.write( "-1 | 9 9 -1 -1\r\n" );
document.write( " | -9 0 1\r\n" );
document.write( " --------------\r\n" );
document.write( " 9 0 -1 0\r\n" );
document.write( "\r\n" );
document.write( "Aha! The remainder is zero, so x+1 is a divisor of\r\n" );
document.write( "of
, and therefore x=-1 is a\r\n" );
document.write( "solution.\r\n" );
document.write( "\r\n" );
document.write( "Anytime we divide by synthetic division and get a zero \r\n" );
document.write( "remainder, we have factored the polynomial. In this\r\n" );
document.write( "case we have factored
and now\r\n" );
document.write( "we have\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "or eliminating the
term:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Now we can factor the expression in the second parentheses\r\n" );
document.write( "as the difference of two perfect squares and get:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Setting each factor = 0,\r\n" );
document.write( "\r\n" );
document.write( "x+1=0 gives x=-1\r\n" );
document.write( "\r\n" );
document.write( "3x-1=0 gives x=
\r\n" );
document.write( "\r\n" );
document.write( "3x+1=0 gives x=
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "